scholarly journals Experimental and Numerical Study of Fire Resistance of Composite Beams

2015 ◽  
Vol 27 (2) ◽  
pp. 143 ◽  
Author(s):  
Ahn
2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


2020 ◽  
Vol 12 (20) ◽  
pp. 8328 ◽  
Author(s):  
Tomas Kinderis ◽  
Mindaugas Daukšys ◽  
Jūratė Mockienė

Over the past decade, several types of composite slim floor constructions have been used in multi-storey buildings in Lithuania. In order to study the efficiency of composite beam application in steel-framed multi-storey buildings, Thorbeam (A1), Deltabeam (A2), slim floor beam (A3) and asymmetric slim floor beam (A4) were chosen and evaluated according to nine assessment criteria (beam cost (K1), initial preparation on site (K2), installation time (K3), complexity of installation technology (K4), labour costs (K5), fire resistance (K6), load bearing capacity (K7), beam versatility (K8), and availability of beams (K9)). First, the significance of the rating criteria was selected and the order of the ranking criteria was obtained (K1˃K7˃K3˃K6˃K4˃K5˃K2˃K8˃K9) by means of a survey questionnaire. Second, the beams were ranked according to the points given by the questionnaire respondents as follows: 160 points were given to A2, 144 points to A1, 129 points to A4, and 111 points to A3. Deltabeam is considered to be the most rational alternative of the four beams compared. Calculations done using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) analysis method revealed that composite beam A2 was the best slim floor structure alternative for an eight-storey high-rise commercial residential building frame, A1 ranked second, A4 ranked third, and A3 ranked fourth. In addition, the four composite beams were compared to a reinforced concrete beam (A5) according to three assessment criteria (beam cost including installation (C1), beam self-weight (C2) and fire resistance (C3)). Deltabeam was found to be efficient for use as a slim floor structure in a multi-story building due to having the lowest cost, including installation, and self-weight, and the highest fire resistance compared to other composite beams studied. Although Deltabeams are 1.4 times more expensive than reinforced concrete beams, including installation costs, they save about 2.5% of the building’s height compared to reinforced concrete beams.


Author(s):  
E. Sevkat ◽  
B. M. Liaw ◽  
F. Delale ◽  
B. B. Raju

This paper presents an experimental and numerical study to estimate ballistic limit velocity, V50, of plain-weave hybrid S2 glass-IM7 graphite fibers/toughened SC-79 resin (cured at 177°C) composite beams. The tests were conducted on hybrid S2 glass-IM7 graphite fibers/toughened SC-79 resin and nonhybrid S2 glass-fiber/toughened SC-79 resin composites beams using high-speed gas-gun. The ballistic impact tests were then modeled using 3-D dynamic nonlinear finite element (FE) code, LS-DYNA, modified with a proposed user-defined nonlinear-orthotropic damage model. The ballistic limit velocities, V50, for both composite beams were then estimated using (a) only experimental tests, (b) combined experimental and numerical tests, (c) FE calculated residual velocities, and (d) FE calculated residual and transferred energies. For each type of composite beams, the parameters for the well-known Lambert-Jones equation were also computed. Good agreement between experimental and numerical results was observed.


2016 ◽  
Vol 20 (10) ◽  
pp. 1451-1465 ◽  
Author(s):  
Shou-Chao Jiang ◽  
Gianluca Ranzi ◽  
Ling-Zhu Chen ◽  
Guo-Qiang Li

This article presents an extensive experimental and numerical study aimed at the evaluation of the thermo-structural response of composite beams with composite slabs. Two full-scale fire tests were carried out on simply supported composite steel-concrete beams with steel sheeting perpendicular and parallel to the steel joist, respectively. Both specimens were observed to fail by developing large displacements. Concrete crushing at the mid-span, debonding of the profiled sheeting and spalling of the fire protection were observed during both tests. A three-dimensional finite element model was developed in ABAQUS, and its accuracy was validated against the experimental measurements collected as part of this study. The model was then used to perform a parametric study to determine the influence of the degree of shear connection, load ratio and design fire rate on the structural response of composite beams at elevated temperatures. These results, together with experimental data available in the literature, were used to evaluate the ability of European guidelines to predict the critical temperature of composite beams. It was shown that predictions from Eurocode 4 were safe and provided conservative estimates for most cases.


2019 ◽  
pp. 1-17
Author(s):  
Mohamed H. Makhlouf ◽  
Hala M. Refat

This paper presents an experimental and numerical study carried out to investigate the flexural and shear behavior of concrete-steel composite beams with circular web openings strengthened using two different techniques around openings. The experimental program conducted on nine simply supported beams which were constructed with different variables. One steel beam and eight concrete-steel composite beams were experimentally tested. The tested beams are of 1500 mm length and BFI cross section of steel beam but composite beams were BFI steel section connected with concrete slab had 300 mm width and 70 mm depth, while this connection is done by headed stud shear connector. The tested specimens subjected to positive bending were loaded by one or two line load across the width of the concrete slab. The main parameters were the type of beams, web openings effect, location of web openings, strengthening techniques around openings externally CFRP strips and vertical steel links using steel plates placed on the top and bottom surface of beams anchored with fine threads, and number of CFRP strips layers. The effect of these parameters on the failure of modes, ultimate load, first cracking load and deflection were investigated. Moreover, a finite element models were developed by ANSYS (version 14) to simulate all the tested specimens, experimental test results were compared with FE results obtained. The experimental results showed that both strengthening systems applied in this research were remarkably increased the beam strength, and the capacity retrieve of beams without openings. This study approved that steel links technique gave more prominent simplicity of use and low cost. FEM models were in good agreement with the corresponding experimental ones. However, the calculated ultimate loads were slightly higher than the experimental ultimate loads up to 10%.


2020 ◽  
Vol 20 (5) ◽  
pp. 83-89
Author(s):  
Jaekwon Ahn ◽  
Inhwan Yeo ◽  
Gyuhwan Cho ◽  
Kyujae Hwang

In this study, the fire resistance of steel composite beams typically used in building structures was investigated through standard fire and loading tests. For the tests, fire-exposure conditions depending on the steel section shape and load ratio applied to the beams were considered as the test parameters. Based on the test results, the applicability of fire design methods for composite beams recommended in current domestic and overseas fire design codes was analyzed. The results indicate that the current temperature-based design method and reduced flexural capacity method specified by the American Institute of Steel Construction may lead to the conservative fire design of steel composite beams owing to the underestimation of the effects of the fire-exposure conditions and load ratios.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Junli Lyu ◽  
Qichao Chen ◽  
Huizhong Xue ◽  
Yongyuan Cai ◽  
Jingjing Lyu ◽  
...  

To investigate the fire resistance of composite beams with restrained superposed slabs, three specimens were tested under uniformly distributed loads in a furnace. The effects of the thickness of the postcast top layer in superposed slabs and the spacing of shear studs on the structural behaviours of composite beams under fire were further examined. During the tests, the temperature distributions of the superposed slabs and steel beams as well as the displacements at their key positions were recorded and analysed. It was found that the temperature of the concrete superposed slabs decreased long their heights from the bottom. The most drastic change of the temperature along the slab cross section was found in the region with a distance of 40 mm to the slab bottom. The concrete superposed slabs could impose restraints to the steel beams due to their incompatible deformations. Cracks were developed on the top surfaces of the specimens and the superposing interfaces between the precast slabs and postcast top layers were not broken. Through the comparisons of different specimens, the spacing of shear studs could have a significant effect on the fire resistance of composite beams, especially for their deformation recovery capacities. In contrast, the effect of the thickness of the postcast top layers was negligible. ABAQUS was employed to simulate the temperature fields and deformation behaviours of composite beam specimens based on a sequenced thermomechanical coupling analysis. The numerical results agreed well with the experiment data, which validated the developed numerical model.


Sign in / Sign up

Export Citation Format

Share Document