Orientation Relations

Author(s):  
Harshad K. D. H. Bhadeshia
2009 ◽  
Vol 105 (1) ◽  
pp. 013544 ◽  
Author(s):  
Stefan J. Turneaure ◽  
Y. M. Gupta ◽  
Paulo Rigg

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 837 ◽  
Author(s):  
Jerome Meiser ◽  
Herbert Urbassek

We used classical molecular dynamics simulation to study the ferrite–austenite phase transformation of iron in the vicinity of a phase boundary to cementite. When heating a ferrite–cementite bicrystal, we found that the austenitic transformation starts to nucleate at the phase boundary. Due to the variants nucleated, an extended poly-crystalline microstructure is established in the transformed phase. When cooling a high-temperature austenite–cementite bicrystal, the martensitic transformation is induced; the new phase again nucleates at the phase boundary obeying the Kurdjumov–Sachs orientation relations, resulting in a twinned microstructure.


2015 ◽  
Vol 48 (5) ◽  
pp. 1346-1354 ◽  
Author(s):  
Angelika Dorothea Rosa ◽  
Nadège Hilairet ◽  
Sujoy Ghosh ◽  
Gaston Garbarino ◽  
Jeroen Jacobs ◽  
...  

Microstructures govern the mechanical properties of materials and change dramatically during phase transformations. A detailed understanding of microstructures at different stages of a transformation is important for the design of new materials and for constraining geophysical processes. However, experimental studies of transformation microstructures at the grain scale have been mostly based onex situobservations of quenched products, which are difficult to correlate with bulk sample properties and transformation kinetics. Here, it is shown how multi-grain crystallography on polycrystalline samples, combined with a resistively heated diamond anvil cell, can be applied to investigate the microstructural properties of a material undergoing a phase transitionin situat high pressure and high temperature. This approach allows the extraction of the crystallographic parameters and orientations of several hundreds of grains inside a transforming sample. Important bulk information on grain size distributions and orientation relations between the parent and the newly formed phase at the different stages of the transformation can be monitored. These data can be used to elucidate transformation mechanisms (e.g.coherentversusincoherent growth), growth rates and orientation-dependent growth of individual grains. The methodology is demonstrated on the α–γ phase transitions in hydrous Mg2SiO4·H2O up to 22 GPa and 940 K. This transformation most likely occurs in the most abundant mineral of the Earth's upper mantle (Mg0.8Fe0.2SiO4) in deep cold subducted slabs and plays an important role in their subduction behaviour.


2020 ◽  
Vol 299 ◽  
pp. 541-545
Author(s):  
Mikhail L. Lobanov ◽  
S.V. Danilov ◽  
Vladimir I. Pastukhov

Structure-texture states in brass rods after hot extrusion and air-cooling have been investigated with the orientation microscopy (EBSD). In the examined samples, a significant concentration of β-phase with the lattice, close to bcc and fcc α-phase, has been detected. The β-phase texture consisted of the main components: two close to {110}<110> and {001}<110>. The α-phase texture consisted of the main components: close to {001}<100> and two close {110}<111>. The analysis of crystallographic relationship of the texture components of β-and α-phases demonstrates that they may all be obtained, in accordance with the orientation relations, which are intermediate between the Kurdjumov-Sachs and Nishiyama-Wasserman types It is assumed that β-α transformation began in β-phase at coincident site lattice Σ3 and Σ33a boundaries.


Author(s):  
Tiansi Dong

This chapter proposes a commonsense understanding of distance and orientation knowledge between extended objects, and presents a formal representation of spatial knowledge. The connection relation is taken as primitive. A new axiom is introduced to govern the connection relation. Notions of ‘near extension’ regions and the ‘nearer’ predicate are coined. Distance relations between extended objects are understood as degrees of the near extension from one object to the other. Orientation relations are understood as distance comparison from one object to the sides of the other object. Therefore, distance and orientation relations are internally related through the connection relation. The ‘fiat projection’ mechanism is proposed to model the mental formation of the deictic orientation reference framework. This chapter shows diagrammatically the integration of topological relations, distance relations, and orientation relations in the RCC frameworks.


2017 ◽  
Vol 885 ◽  
pp. 165-170
Author(s):  
Erzsebet Nagy ◽  
Márton Benke ◽  
Árpád Kovács ◽  
Valéria Mertinger

The crystallographic orientation relations of phases forming during the martensitic transformation determine the properties of alloys. In TRIP/TWIP steels, the circumstances of thermomechanical treatment (e.g. temperature, deformation) define the forming of martensites of different origins. Due to the thermomechanical treatment, thermally induced martensite (εTH), strain induced martensite (εD) and α’ martensite phases are present in the samples besides the austenite. The proportion of martensites in the sample is defined by the parameters of treatment. The thermally and strain induced martensites which are simultaneously present in the alloy at room temperature can be differentiated by the orientation relations.The martensitic transformations were followed by different methods in FeMn alloys with different Cr content. The macroscopic crystallographic anisotropy was measured by X-ray diffraction method; the microscopic one was examined by EBSD. The cognition of phenomenon observed in the texture image in different scales helps determine the possible origin of martensites.


Sign in / Sign up

Export Citation Format

Share Document