Short-term effects of organic carbon source, chemical oxygen demand/N ratio and temperature on autotrophic nitrogen removal

Author(s):  
Javier Adrián Sánchez Guillén
2014 ◽  
Vol 69 (10) ◽  
pp. 2079-2084 ◽  
Author(s):  
J. A. Sánchez Guillén ◽  
Y. Yimman ◽  
C. M. Lopez Vazquez ◽  
D. Brdjanovic ◽  
J. B. van Lier

To assess the feasibility of the Anammox process as a cost-effective post-treatment step for anaerobic sewage treatment, the simultaneous effects of organic carbon source, chemical oxygen demand (COD)/N ratio, and temperature on autotrophic nitrogen removal was studied. In batch experiments, three operating conditions were evaluated at 14, 22 and 30 °C, and at COD/N ratios of 2 and 6. For each operating condition, containing 32 ± 2 mg NH4+-N/L and 25 ± 2 mg NO2−-N/L, three different substrate combinations were tested to simulate the presence of readily biodegradable and slowly biodegradable organic matter (RBCOD and SBCOD, respectively): (i) acetate (RBCOD); (ii) starch (SBCOD); and (iii) acetate + starch. The observed stoichiometric NO2−-N/NH4+-N conversion ratios were in the range of 1.19–1.43, and the single or simultaneous presence of acetate and starch did not affect the Anammox metabolism. High Anammox nitrogen removal was observed at 22 °C (77–84%) and 30 °C (73–79%), whereas there was no nitrogen removal at 14 °C; the Anammox activity was strongly influenced by temperature, in spite of the COD source and COD/N ratios applied. These results suggest that the Anammox process could be applied as a nitrogen removal post-treatment for anaerobic sewage systems in warm climates.


2013 ◽  
Vol 726-731 ◽  
pp. 2589-2593
Author(s):  
Tao Yang ◽  
Pei Ying Wu ◽  
Zhan Sheng Zhao ◽  
Hua Wei Xu ◽  
Gao Zhi Lv

Enriched domestication in SBR was used to improve the proportion of aerobic denitrifiers in activated sludge, and actual power plant wastewater was treated, which proved the existence of aerobic denitrification. But at the later stage, because of carbon deficiency, aerobic denitrifiers were inhibited and NO3--N accumulated. Sodium acetate used as external organic carbon source was added when reaction carried on 3.5 hours to improve the COD/NH4+-N ratio from 6.5 to 10, effluent NO3--N concentration was 3.6 mg\L, average removal efficiency of TN was 90%, which could improve the aerobic denitrification performance of whole system effectively.


Author(s):  
Michiel Van Tendeloo ◽  
Bert Bundervoet ◽  
Nathalie Carlier ◽  
Wannes Van Beeck ◽  
Hans Mollen ◽  
...  

Energy-autonomous sewage treatment can be achieved if nitrogen (N) removal does not rely on organic carbon (~chemical oxygen demand, COD), so that a maximum of the COD can be redirected...


Aquaculture ◽  
2021 ◽  
pp. 736669
Author(s):  
Rildo José Vasconcelos de Andrade Brazil ◽  
Elizabeth Pereira dos Santos ◽  
Gisely Karla de Almeida Costa ◽  
Clarissa Vilela Figueiredo Campos ◽  
Suzianny Maria Bezerra Cabral da Silva ◽  
...  

2004 ◽  
Vol 50 (10) ◽  
pp. 139-144 ◽  
Author(s):  
A. Oehmen ◽  
Z. Yuan ◽  
L.L. Blackall ◽  
J. Keller

The effectiveness of enhanced biological phosphorus removal (EBPR) systems is directly affected by the competition of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigated the short-term effects of carbon source on PAO and GAO performance. The tests were designed to clearly determine the impact of volatile fatty acid (VFA) composition on the performance of two types of biomass, one enriched for PAOs and the other for GAOs. The two populations were enriched in separate reactors using identical operating conditions and very similar influent compositions with acetate as the sole carbon source. The only difference was that a very low level of phosphorus was present in the influent to the GAO reactor. The abundance of PAOs and GAOs was quantified using fluorescence in-situ hybridisation. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to utilise different carbon substrates. While both are able to take up acetate rapidly and completely, the GAOs are far slower at consuming propionate than the PAOs during short-term substrate changes. This provides a potentially highly valuable avenue to influence the competition between PAOs and GAOs. Other VFAs studied seem to be less usable in the short term by both PAOs and GAOs, as indicated by their much lower uptake rates.


2017 ◽  
Vol 23 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Gamze Dalgic ◽  
Ilter Turkdogan ◽  
Kaan Yetilmezsoy ◽  
Emel Kocak

The study investigated the pretreatment of real paracetamol (PCT) wastewater of a pharmaceutical industry by Fenton process. At the best experimental conditions (COD/H2O2 = 1/1, Fe+2/H2O2 = 1/70, settling method:centrifuging, pH 6 at settling step), 92.7, 92.7, 95.5, 99.1, 99.9 and 99.4% of chemical oxygen demand (COD), total organic carbon (TOC), 5-day biological oxygen demand (BOD5), PCT, para-amino phenol (PAP) and aniline were removed, respectively. Changes in the concentrations of these parameters were also investigated for both oxidation and settling steps of Fenton process. It was found that COD and TOC were removed at the settling step (precipitation) whereas PCT, PAP and aniline were removed at the oxidation step. Mass balance calculations were also studied to show the mass distributions of COD in different phases (gas + foam, effluent and sludge). Fenton process was found as an effective method for the pretreatment of real PCT wastewater for discharging in a determined collective treatment plant.


Sign in / Sign up

Export Citation Format

Share Document