Characteristics analysis of cavitation flow in a centrifugal pump

Author(s):  
Yuliang Cao ◽  
Guo He ◽  
Yongsheng Su ◽  
Tingfeng Ming
2013 ◽  
Vol 58 (8) ◽  
pp. 949-952 ◽  
Author(s):  
Lei Tan ◽  
BaoShan Zhu ◽  
ShuLiang Cao ◽  
YuMing Wang

Author(s):  
XiaoMei Guo ◽  
ZuChao Zhu ◽  
BaoLing Cui ◽  
Yi Li

AbstractDesigning inducer is one of the effective ways to improve the suction performance of high-speed centrifugal pumps. The operation condition including rotational speeds can affect the internal flow and external performance of high-speed centrifugal pumps with an inducer. In order to clarify the rotating cavitation performance of a centrifugal pump with a splitter-bladed inducer under different rotational speed, a centrifugal pump with a splitter-bladed inducer is investigated in the work. By using Rayleigh–Plesset equations and Mixture model, the cavitation flow of centrifugal pump is numerically simulated, as well as the external performance experimental test is carried out. It is found that the cavitation area increases with the rotational speeds. The location of the passage where cavitation is easy to appear is explored. Asymmetric cavitation behavior is observed. That, the trail of the inducer is easy to take cavitation when the rotational speed is increased to a degree, is also observed. The trend of


Author(s):  
Hui Sun ◽  
Shouqi Yuan ◽  
Yin Luo ◽  
Yihang Guo ◽  
Jiangnan Yin

Motor current signature analysis technology is a cost-effective, non-intrusive and reliable technique used for monitoring of motor-driven devices. In this method, the motor is regarded as a torque sensor. Theoretical analysis, numerical simulation, and experiment were conducted to do research on time–frequency analysis of current signature for unsteady characteristic extraction of pump operation. Results show that most energy of current is concentrated on the first order of Intrinsic Mode Function (IMF) component. Torque related oscillation could be reflected by energy amplitude and its variation. The root mean square and kurtosis value of transient energy in Hilbert spectrum could be regarded as the indicators of centrifugal pump operation point detection. Hilbert marginal spectrum could depict the stability of centrifugal pump operation and suggest the proper operation points to ensure high efficiency and reliability.


Author(s):  
Bo Gao ◽  
Minguan Yang ◽  
Zhong Li ◽  
Can Kang

To study the cavitation flow field and cavitation induced noise features in a centrifugal pump, a model pump is chosen as the research object. Cavitation flow field at design and off-design operating conditions is visualized by high speed camera. The cavitation bubbles spatial distribution changing with pump net positive suction head (NPSH) value have been captured. Meanwhile, cavitation noise signals from the pump at the corresponding operating conditions have been acquired in the frequency band from 10 up to 8kHz. Noise levels at broadband frequency and discrete frequency, such as rotating frequency (RF) and blade pass frequency (BPF), are discussed. It is of help to recognize the relationship between cavitation bubbles and emitted noise spectrum characteristics. Experimental results indicate that the total noise level is unlikely to raise before and in the cavitation inception period. But sound pressure level (SPL) over high frequency broadband increases obviously, as well as SPL at BPF and half of that. It is hard to change at RF. When the NPSH goes down until to the onset of cavitation damage, cavitation cloud appears. The volume fraction of bubbles in every impeller passage is different. The total and high frequency noise level reach peak values near the NPSH critical point. The discrete tone at half of BPF also raises steeply. Cavitation bubbles are filled both on suction and pressure side of the blades in fully developed cavitation stage. Emitted noise energy fluctuates due to the unsteady features of internal flow in the pump.


Author(s):  
Motohiko Nohmi ◽  
Akira Goto ◽  
Yuka Iga ◽  
Toshiaki Ikohagi

A low specific speed centrifugal pump was constructed to measure cavitation flow characteristics. Pressure distribution over blade surfaces and wall static pressure were measured dynamically and cavitation behavior were photographed by using high speed video and a digital camera. Cavitation flow inside the impeller was computed by commercial CFD code CFX-TASCflow. Head drop characteristics were measured in detail and compared to CFD results. In the case of the best efficiency point flow, bubble cavitation increases along the suction side while decreasing NPSH. When bubble cavitation reaches the throat, another cavity appears on pressure side and the head breakdown occurs steeply. At the high flow rate, cavitation bubbles appear incipiently at the throat on pressure side and head drops gradually. At best efficiency point flow, cavitation phenomena are well captured by CFD.


Author(s):  
Tan Lei ◽  
Zhu Bao Shan ◽  
Cao Shu Liang ◽  
Wang Yu Chuan ◽  
Wang Bin Bin

Unsteady cavitation flows in a centrifugal pump operating under off-design conditions are investigated by using a numerical framework combining the re-normalization group k–ɛ turbulence model and the transport equation-based cavitation model. The reliability and accuracy of the numerical model are demonstrated by the satisfactory agreement between the experimental and numerical values of the pump performance. Under partial discharge, the frequency spectra of the pressure fluctuation at the impeller inlet become more complex as the pump inlet pressure decreases. The maximum amplitude of pressure fluctuation at the blade leading edge for cavitation flow is 2.54 times larger than that for non-cavitation flow because of the violent disturbances caused by cavitation shedding and explosion. Under large discharge, the magnification on the maximum pressure amplitude is 1.6. This finding indicates that cavitation has less influence on pressure fluctuations in the impeller under large discharge than under partial discharge. This numerical simulation demonstrates the evolution of cavitation structure inside the impeller.


2017 ◽  
Vol 31 (34) ◽  
pp. 1750312 ◽  
Author(s):  
Weiguo Zhao ◽  
Xiangdong Han ◽  
Rennian Li ◽  
Yingjie Zheng ◽  
Yanyan Wang

To research effects of silt particles on the performance and cavitation flow fields, silt-laden cavitation flow was simulated in the centrifugal pump. Silt mean diameters are 0.005 mm and 0.010 mm and silt concentrations are 0.5% and 1.0%. Results show that silt particles with silt mean diameter 0.005 mm and silt concentration 1.0% and silt particles with silt mean diameter 0.010 mm and silt concentration 0.5% promote the development of cavitation and distribution range of vapor is larger than pure water. Effects of silt particles and cavitation make distribution range of turbulent kinetic energy larger than pure water and streamlines are more disorderedly. Silt particles with silt mean diameter 0.010 mm and silt concentration 1.0% have little effect on cavitation and distribution range of vapor is similar with pure water. Effects of silt particles make distribution range of turbulent kinetic energy larger than pure water and streamlines are more disorderedly than pure water. With the increase of silt mean diameter and silt concentration, head and efficiency decrease gradually. For silt particles promoting the evolution of cavitation, distribution range of turbulent kinetic energy is larger and streamlines are more disorderly than silt-laden cavitation flow with silt particles inhibiting the development of cavitation.


Sign in / Sign up

Export Citation Format

Share Document