Influence of crack tip sharpness and radius on the strain distribution in rubbers analyzed by finite element simulation and experiments

2017 ◽  
pp. 89-96
2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


2013 ◽  
Vol 380-384 ◽  
pp. 64-68
Author(s):  
Xin Ze Zhao ◽  
Rui Feng Wang ◽  
Jie Wang ◽  
Mei Yun Zhao

The 3d model of miter gate has been set up based on skeleton model of Pro/E, and it has been imported into ANSYS Workbench module for static structure analysis and modal analysis. In the process of finite element simulation, the rotational constraints has been imposed on the top and bottom pivot according to the actual operation situation of the miter gate, and obtain the first several order frequencies and corresponding modal vibration mode of the miter gate, which can show the hydrodynamic vibration stress and strain distribution. According to the results of the finite element simulation analysis, the prototype vibration test of the miter gate has been done. The test results show that the vibration amplitude and the stress and strain distribution of each part of the miter gate are corresponding to the vibration test.


2014 ◽  
Vol 678 ◽  
pp. 551-555
Author(s):  
Xue Zhi Wang ◽  
Hao Fei Zou ◽  
Shu Wen Zheng ◽  
Yuan Li ◽  
Jun Yu Liu

I-II mixed mode fracture under two kinds of load manners was carried out, and it was also simulated by the ANSYS, and the test results and the simulation results were compared and analyzed, and the reasonableness of the model built and the effectiveness of test were verified. The failure process of fracture under the loading could be judged through the development of the crack tip combined with the stress nephogram and strain nephogram when cracks initiation at crack tip, and it provided the basis for the crack damage judgment.


2007 ◽  
Vol 345-346 ◽  
pp. 501-504
Author(s):  
H.S. Kim ◽  
K.S. Kim ◽  
Young Seog Lee

In this study, we introduce an approach which simulates crack propagation under mixedmode loading condition. In comparison with the conventional element removing method which eliminates any element that satisfies a prescribed failure criterion near the crack tip, the present approach selects a set of elements ahead of the crack tip on the crack growth direction and removes them one by one when the element meets a prescribed failure criterion. Compact tension shear (CTS) specimens of type 304 stainless steel were used for failure testing. Finite element simulation has been carried out to simulate crack profiles and compared with observed ones. Results showed the proposed element removing algorithm is useful for crack growth simulation under mixed mode loading condition. The experimentally measured crack growth profile is in an agreement with the predicted ones.


2013 ◽  
Vol 405-408 ◽  
pp. 2576-2579
Author(s):  
Bo Zhou ◽  
Jun Lv ◽  
Dong Xue Wang

The mechanical behaviors of super-elastic shape memory alloy are formulated based on Auricchios constitutive model. The finite element simulation method for the mechanical behaviors of super-elastic shape memory alloy using the software of ANSYS is introduced. The mechanical behaviors near crack-tip in a shape memory alloy plate with one inclining crack are numerically simulated by finite element method. Results show that the software of ANSYS can simulate the mechanical behaviors of shape memory alloy with crack effectively.


2013 ◽  
Vol 774-776 ◽  
pp. 1186-1189 ◽  
Author(s):  
Ling Yun Zhang ◽  
Ze Sun

In this paper, through analysed the strain and stress of sheet inner-concave flanging and observed result of finite element simulation, the law of strain distribution in outer edge area of deformation.By simplified the distributed regularity, a method to predict the shape distortion of outer edge area of deformation was obtained, the calculation results and the finite element simulation results are nearly equal to each other.


Sign in / Sign up

Export Citation Format

Share Document