Finite Element Simulation and Comparison of Hydraulic Splitting Fracturing Test of Concrete

2014 ◽  
Vol 678 ◽  
pp. 551-555
Author(s):  
Xue Zhi Wang ◽  
Hao Fei Zou ◽  
Shu Wen Zheng ◽  
Yuan Li ◽  
Jun Yu Liu

I-II mixed mode fracture under two kinds of load manners was carried out, and it was also simulated by the ANSYS, and the test results and the simulation results were compared and analyzed, and the reasonableness of the model built and the effectiveness of test were verified. The failure process of fracture under the loading could be judged through the development of the crack tip combined with the stress nephogram and strain nephogram when cracks initiation at crack tip, and it provided the basis for the crack damage judgment.

2007 ◽  
Vol 345-346 ◽  
pp. 501-504
Author(s):  
H.S. Kim ◽  
K.S. Kim ◽  
Young Seog Lee

In this study, we introduce an approach which simulates crack propagation under mixedmode loading condition. In comparison with the conventional element removing method which eliminates any element that satisfies a prescribed failure criterion near the crack tip, the present approach selects a set of elements ahead of the crack tip on the crack growth direction and removes them one by one when the element meets a prescribed failure criterion. Compact tension shear (CTS) specimens of type 304 stainless steel were used for failure testing. Finite element simulation has been carried out to simulate crack profiles and compared with observed ones. Results showed the proposed element removing algorithm is useful for crack growth simulation under mixed mode loading condition. The experimentally measured crack growth profile is in an agreement with the predicted ones.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


AIAA Journal ◽  
2018 ◽  
Vol 56 (11) ◽  
pp. 4632-4637
Author(s):  
Daniel Ramirez Tamayo ◽  
Arturo Montoya ◽  
Harry Millwater

2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


2021 ◽  
Vol 263 (6) ◽  
pp. 648-652
Author(s):  
Tuo Xing ◽  
Xianhui Li ◽  
Xiaoling Gai ◽  
Zenong Cai ◽  
Xiwen Guan

The monostable acoustic metamaterial is realized by placing a flexible panel with a magnetic proof mass in a symmetric magnetic field. The theoretical model of monostable metamaterials has been proposed. The method of finite element simulation is used to verify the theoretical model. The magnetic force of the symmetrical magnetic field is simplified as the relationship between force and displacement, acting on the mass. The simulation results show that as the external magnetic force increases, the peak sound absorption shifts to low frequencies. The theoretical and finite element simulation results are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document