Steel structures – structural engineering

2017 ◽  
pp. 9-31
1991 ◽  
Vol 18 (5) ◽  
pp. 839-850 ◽  
Author(s):  
R. G. Redwood ◽  
V. S. Channagiri

New provisions of the CSA standard for steel structures (CAN/CSA-S16.1-M89) dealing with detailing of concentrically braced frames for seismic design are described and related to requirements of the National Building Code of Canada. The basis of the new requirements is outlined, and an example eight-storey frame is used to outline a methodology for the design process for a ductile braced frame and to illustrate the impact of the provisions. Key words: design, structural engineering, steel, earthquakes, braced frame, standards.


2015 ◽  
Vol 744-746 ◽  
pp. 265-273
Author(s):  
Xi Yu Wang ◽  
Yong Feng Luo ◽  
Xu Hong Qiang ◽  
Xiao Liu

Past three decades have seen the rapid development of high strength steel (HSS) in its application in structural engineering. However, so far the mechanical performance of a HSS beam-to-column connection has not been systematically studied, especially for bolted end-plate connections, the commonly employed beam-to-column connections in steel structures, which could restrict the application of HSS. Therefore, this paper aims to represent the basic methods, current achievements, recent applications, and the existing problems that lie in the way. In doing so, this paper is composed of three parts, experimental results, numerical analysis as well as component method. At the end, this paper indicates that future investigation should be based upon experimental analysis and proper finite element modeling, to verify a numerical model and to refine design standards.


2019 ◽  
Author(s):  
Masoud Abedini ◽  
Sudharshan N. Raman ◽  
Azrul A. Mutalib ◽  
Ebrahim Akhlaghi

Rehabilitation and retrofitting of structures designed in accordance to standard design codes is an essential practice in structural engineering and design. For steel structures, one of the challenges is to strengthen the panel zone as well as its analysis in moment-resisting frames. In this research, investigations were undertaken to analyze the influence of the panel zone in the response of structural frames through a computational approach using ETABS software. Moment-resisting frames of six stories were studied in supposition of real panel zone, different values of rigid zone factor, different thickness of double plates, and both double plates and rigid zone factor together. The frames were analyzed, designed and validated in accordance to Iranian steel building code. The results of drift values for six stories building models were plotted. After verifying and comparing the results, the findings showed that the rigidity lead to reduction in drifts of frames and also as a result, lower rigidity will be used for high rise building and higher rigidity will be used for low rise building. In frames with story drifts more than the permitted rate, where the frames are considered as the weaker panel zone area, the story drifts can be limited by strengthening the panel zone with double plates. It should be noted that higher thickness of double plates and higher rigidity of panel zone will result in enhancement of the non-linear deformation rates in beam elements. The resulting deformations of the panel zone due to this modification can have significant influence on the elastic and inelastic behavior of the frames.


2018 ◽  
Vol 9 (5) ◽  
pp. 705-720 ◽  
Author(s):  
Ehsan Bazarchi ◽  
Yousef Hosseinzadeh ◽  
Parinaz Panjebashi Aghdam

Purpose It is common practice in structural engineering to assume floor diaphragms infinitely stiff in their own plane. But, most of the code provisions lack clarity and unity in categorising floor diaphragms and discussing their behaviour based on the seismic response of the structures. Besides, although many of these code provisions have presented simple techniques and formulations for determining the level of flexibility in floor diaphragms, the implementation of these techniques on more complex floor systems such as the steel-deck composite floors is still under question. The paper aims to discuss these issues. Design/methodology/approach In this study, an equivalent concrete floor is employed as a representative of in-plane diaphragm action of steel-deck composite floor, using simple modelling techniques in SAP2000 and the results are validated by complex structural models developed in ABAQUS. Afterwards, the equivalent floor is inserted to 3, 5 and 7 storey steel structures with 2, 3 and 5 plan aspect ratios in two categories of structures with rigid diaphragms and analogous structures with flexible diaphragms and the responses are compared to each other. Findings The results show that the proposed technique is an effective method for evaluating the diaphragm action of steel-deck composite floors. Additionally, it is concluded that, the boundary values of plan aspect ratio equal to 3 and λ coefficient equal to 0.5 in steel-deck composite floors, mentioned in code provisions for categorising diaphragms, are not always conservative and need to be scrutinised. Originality/value The proposed methodology provides simple framework for assessing the effects of in-plane flexibility of steel-deck composite on seismic response of steel structures.


1991 ◽  
Vol 18 (6) ◽  
pp. 1062-1077 ◽  
Author(s):  
Richard G. Redwood ◽  
Feng Lu ◽  
Gilles Bouchard ◽  
Patrick Paultre

Braced frame structures designed according to the 1990 edition of the National Building Code of Canada and the CSA standard for steel structures (CAN/CSA-S16.1-M89) are analyzed under a number of different earthquake motions. The nonlinear response is studied in the light of the design philosophy, and the validity of a number of design assumptions is examined. The study is limited to a group of eight-storey frames, located either in Victoria, British Columbia, or Montreal, Quebec, all with the same bracing configuration. A 20-storey frame in Montreal is also considered. The results suggest a number of areas in which improved design provisions could be made. Key words: analysis, design, structural engineering, steel, earthquakes, braced frames.


Author(s):  
Yongwook Kim ◽  
Jarett Rooney

<p>More frequent terrorist attacks to civilians, buildings, and infrastructures have been observed in recent years, which occasionally resulted in significant fatalities, financial damages, and service interruptions due to collapses of the structures. The collapse of a structure can be triggered by substantial or complete damages of essential structural members, potentially resulting from close-range detonations. Close-range detonations can be fatal even with a small portable charge weight. Many structures in major international cities are potentially exposed to close-range detonations, simply because there is no room to maintain a sufficient stand-off distance around each structural member. Current available approaches to blast resistant designs are focusing on far-range detonations; for close-range detonations, a non-linear explicit finite element analysis is required, instead. Most structural engineering firms do not have access to the analyses, because the details of the analysis are not readily available. In the present study, some details of the non-linear explicit finite element analysis are presented for close-range detonations. The same method is applied to numerical parametric studies for a standard steel column subjected to a range of charge weights and stand-off distances. In the study, the development of a performance-based engineering chart is discussed, which can be used by general structural engineers without performing the numerical analysis. A few practical strengthening layers of steel members are also investigated to effectively mitigate potential damages from close-range detonations.</p>


2005 ◽  

<p>New steel production processes have led to a remarkable improve­ment in steel products within the last few years, and now allows steels to be produced according to the desired mechanical and chemical properties. High-Performance Steel (HPS) is the designa­tion given to this new generation of steels that offer higher performance not only in terms of strength but also toughness, weld­ability, cold formability and corrosion resistance, compared to the traditionally used mild steel grades.</p> <p>The development of HPS goes with today's increased demand for slender lightweight structures, as for example in bridge design and the design of high-rise buildings, where there is a strong require­ment to use high-strength materials in combination with good execution and fabrication properties. However, on the structural engineering side there is a need for knowledge on these new steel grades, and quite often design codes do not provide sufficient information to fully exploit the advantageous properties of HPS.</p> <p>The present volume provides an overview of the development and application of HPS on an international level. This is done by giving information on, for example, the production process, the chemical and mechanical properties, the relevant design and fabrication standards and on recent research results. Approximately fifteen included examples of realised applications aim to provide detailed information based on existing technical solutions, and to point out the major benefits when using HPS in comparison to mild steels.</p> <p>The document is thus not a monograph but an assembly of contri­butions from different countries. lt is separated into chapters related to different countries, namely the USA, Canada, Japan and Europe, all of them providing a state-of-the-art report on HPS.</p>


Author(s):  
Joo Shin Park ◽  
R. Krishna Kishore ◽  
Yeong Su Ha ◽  
Ki Bok Jang

Recently, the numbers of large offshore structures and fixed jacket type platforms are rapidly increasing for oil and gas companies. Generally, a shuttle vessel or helicopter is used to access offshore structures such as a fixed platform, floating platform, jack-up rig and so on. The helideck structure should be installed in these offshore structures for landing and taking-off of the helicopter. The helideck structure comprises of pancakes, girders using aluminum materials and supporting steel structures. The helideck structure should be designed to accommodate a safe landing area suitable for the largest and heaviest helicopter that is anticipated to land on the helideck. The helideck and its supporting structure are safety critical elements as a result of their role in emergency evacuation, as well as during normal operations. The codes and standards applicable for the structural design of the helideck will be determined by where the helideck is to be operated and the national jurisdiction governing the installation or vessel of which the helideck will become part. International standards such as ISO(International Organization for Standardization) codes, Eurocodes, or national standards, e.g. BS(British Standards)5950, NORSOK N-004 or AISC(American Institute of Steel Construction) may be specified for detailed design. The objective of this study is to present the results of structural analysis and design that has been performed for a 28.54 meter diameter octagonal standard aluminum helideck with support truss & lower steel support structure of jackup drilling rig based on the NORSOK requirements. The supporting structure is designed to provide the adequate resistance to the external force produced by the design helicopter and environmental conditions.


1990 ◽  
Vol 17 (4) ◽  
pp. 659-667 ◽  
Author(s):  
R. G. Redwood ◽  
L. Lefki ◽  
G. Amar

New provisions of the CSA Standard for Steel Structures (CAN/CSA-S16.1-M89) dealing with detailing of moment resisting frames for seismic design are described and related to requirements of the National Building Code of Canada. The basis of the new requirements is outlined, and an example eight-storey frame is used to illustrate the impact of the provisions. Key words: design, structural engineering, steel, earthquakes, moment resisting frame, standards.


Sign in / Sign up

Export Citation Format

Share Document