Sustained load performance of adhesive fastening systems in concrete

Author(s):  
R Nilforoush ◽  
L Elfgren ◽  
M Nilsson
Keyword(s):  
2021 ◽  
pp. 073168442110204
Author(s):  
Bin Yang ◽  
Yingying Shang ◽  
Zeliang Yu ◽  
Minger Wu ◽  
Youji Tao ◽  
...  

In recent years, coated fabrics have become the major material used in membrane structures. Due to the special structure of base layer and mechanical properties, coated biaxial warp-knitted fabrics are increasingly applied in pneumatic structures. In this article, the mechanical properties of coated biaxial warp-knitted fabrics are investigated comprehensively. First, off-axial tensile tests are carried out in seven in-plane directions: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Based on the stress–strain relationship, tensile strengths are obtained and failure modes are studied. The adaptability of Tsai–Hill criterion is analyzed. Then, the uniaxial tensile creep test is performed under 24-h sustained load and the creep elongation is calculated. Besides, tearing strengths in warp and weft directions are obtained by tearing tests. Finally, the biaxial tensile tests under five different load ratios of 1:1, 2:1, 1:2, 1:0, and 0:1 are carried out, and the elastic constants and Poisson’s ratio are calculated using the least squares method based on linear orthotropic assumption. Moreover, biaxial specimens under four load ratios of 3:1, 1:3, 5:1, and 1:5 are further tensile tested to verify the adaptability of linear orthotropic model. These experimental data offer a deeper and comprehensive understanding of mechanical properties of coated biaxial warp-knitted fabrics and could be conveniently adopted in structural design.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Marvin J. Cohn ◽  
Fatma G. Faham ◽  
Dipak Patel

A high-energy piping (HEP) asset integrity management program is important for the safety of plant personnel and reliability of the fossil plant generating unit. HEP weldment failures have resulted in serious injuries, fatalities, extensive damage of components, and significant lost generation. The main steam (MS) piping system is one of the most critical HEP systems. Creep damage assessment in MS piping systems should include the evaluation of multiaxial stresses associated with field conditions and significant anomalies, such as malfunctioning supports and significant displacement interferences. This paper presents empirical data illustrating that the most critical girth welds of MS piping systems have creep failures which can be successfully ranked by a multiaxial stress parameter, such as maximum principal stress. Inelastic (redistributed) stresses at the piping outside diameter (OD) surface were evaluated for the base metal of three MS piping systems at the piping analysis model nodes. The range of piping system stresses at the piping nodes for each piping system was determined for the redistributed creep stress condition. The range of piping stresses was subsequently included on a Larson–Miller parameter (LMP) plot for the grade P22 material, revealing the few critical (lead-the-fleet) girth welds selected for nondestructive examination (NDE). In the three MS piping systems, the stress ranges varied from 55% to 80%, with only a few locations at stresses beyond the 65 percentile of the range. By including evaluations of significant field anomalies and the redistributed multiaxial stresses on the outside surface, it was shown that there is a good correlation of the ranked redistributed multiaxial stresses to the observed creep damage. This process also revealed that a large number of MS piping girth welds have insufficient applied stresses to develop substantial creep damage within the expected unit lifetime (assuming no major fabrication defects). This study also provided a comparison of the results of a conventional American Society of Mechanical Engineers (ASME) B31.1 Code as-designed sustained stress analysis versus the redistributed maximum principal stresses in the as-found (current) condition for a complete set of MS piping system nodes. The evaluations of redistributed maximum principal stresses in the as-found condition were useful in selecting high priority ranked girth weldment creep damage locations. The evaluations of B31.1 Code as-designed sustained load stresses were not useful in selecting high priority creep damage locations.


Author(s):  
Edmilson Lira Madureira ◽  
Brenda Vieira Costa Fontes

abstract: The creep of concrete promotes strains over time in structural members kept under sustained load. It causes the stress decrease on the concrete and the steel stress increase in reinforced concrete members. The moisture content and temperature influence significantly such phenomenon. The creep strains model of the NBR 6118/2014 [1] is, applicable, solely, to those cases of constant stress magnitudes. Reinforced concrete members exhibit variations on the stress magnitudes and, in this way, requires the use of an alternative model for the prediction of the creep strains as the so known the State Model. This report refers itself to temperature influence analysis upon creep strains of reinforced concrete structural members. The results have revealed that temperature speeds up the creep effects and, in this way, the steel yielding caused by the stress increase on the reinforcement bars occurs at earlier ages.


2008 ◽  
Vol 254 (17) ◽  
pp. 5594-5598 ◽  
Author(s):  
B. Jiang ◽  
Y. Bai ◽  
W.Y. Chu ◽  
S.Q. Shi ◽  
L.J. Qiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document