Viruses Of The Wheat Take-All Fungus, Gaeumannomyces Graminis Var. Tritiei

2018 ◽  
pp. 221-236 ◽  
Author(s):  
K. W. Buck
2010 ◽  
Vol 100 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Youn-Sig Kwak ◽  
Peter A. H. M. Bakker ◽  
Debora C. M. Glandorf ◽  
Jennifer T. Rice ◽  
Timothy C. Paulitz ◽  
...  

Dark pigmented fungi of the Gaeumannomyces–Phialophora complex were isolated from the roots of wheat grown in fields in eastern Washington State. These fungi were identified as Phialophora spp. on the basis of morphological and genetic characteristics. The isolates produced lobed hyphopodia on wheat coleoptiles, phialides, and hyaline phialospores. Sequence comparison of internal transcribed spacer regions indicated that the Phialophora isolates were clearly separated from other Gaeumannomyces spp. Primers AV1 and AV3 amplified 1.3-kb portions of an avenacinase-like gene in the Phialophora isolates. Phylogenetic trees of the avenacinase-like gene in the Phialophora spp. also clearly separated them from other Gaeumannomyces spp. The Phialophora isolates were moderately virulent on wheat and barley and produced confined black lesions on the roots of wild oat and two oat cultivars. Among isolates tested for their sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), the 90% effective dose values were 11.9 to 48.2 μg ml–1. A representative Phialophora isolate reduced the severity of take-all on wheat caused by two different isolates of Gaeumannomyces graminis var. tritici. To our knowledge, this study provides the first report of an avenacinase-like gene in Phialophora spp. and demonstrated that the fungus is significantly less sensitive to 2,4-DAPG than G. graminis var. tritici.


2006 ◽  
Vol 1 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Simone Graeff ◽  
Johanna Link ◽  
Wilhelm Claupein

AbstractThe ability to identify diseases in an early infection stage and to accurately quantify the severity of infection is crucial in plant disease assessment and management. A greenhouse study was conducted to assess changes in leaf spectral reflectance of wheat plants during infection by powdery mildew and take-all disease to evaluate leaf reflectance measurements as a tool to identify and quantify disease severity and to discriminate between different diseases. Wheat plants were inoculated under controlled conditions in different intensities either with powdery mildew or take-all. Leaf reflectance was measured with a digital imager (Leica S1 Pro, Leica, Germany) under controlled light conditions in various wavelength ranges covering the visible and the near-infrared spectra (380–1300 nm). Leaf scans were evaluated by means of L*a*b*-color system. Visual estimates of disease severity were made for each of the epidemics daily from the onset of visible symptoms to maximum disease severity. Reflectance within the ranges of 490780 nm (r2 = 0.69), 510780nm (r2 = 0.74), 5161300nm (r2 = 0.62) and 5401300 nm (r2 = 0.60) exhibited the strongest relationship with infection levels of both powdery mildew and take-all disease. Among the evaluated spectra the range of 490780nm showed most sensitive response to damage caused by powdery mildew and take-all infestation. The results of this study indicated that disease detection and discrimination by means of reflectance measurements may be realized by the use of specific wavelength ranges. Further studies have to be carried out, to discriminate powdery mildew and take-all infection from other plant stress factors in order to develop suitable decision support systems for site-specific fungicide application.


Author(s):  
J. Walker

Abstract A description is provided for Gaeumannomyces graminis var. tritici. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Gramineae, especially Triticum, Hordeum, Secale, Agropyron and several other grass genera and, more rarely, Sorghum and Zea; also recorded from the roots of plants in other families. DISEASE: Take-all of cereals and grasses (also referred to as deadheads or whiteheads, pietin and pied noir (France), Schwarzbeinigkeit and Ophiobolus Fusskrankheit (Germany), Ophiobolusvoetziekt (Netherlands) and others). Root infection is favoured by soil temperature from 12-20°C (Butler, 1961). Ascospore germ tubes penetrate root hairs and the epidermis in the meristematic region (Weste, 1972) leading to plugging of xylem and root death. GEOGRAPHICAL DISTRIBUTION: (CMI Map 334, ed. 3, 1972). Widespread, especially in temperate zones. Africa; Asia (India, Iran, Japan, USSR): Australasia and Oceania; Europe; North America (Canada, USA); South America (Argentina, Brazil, Chile, Colombia, Uruguay). TRANSMISSION: In soil on infected organic fragments, as runner hyphae on roots of cereals and grasses and, under special conditions, by ascospores. Seed transmission very doubtful (47, 3058).


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiawen Xiao ◽  
Xiaojun Guo ◽  
Xinlei Qiao ◽  
Xuechao Zhang ◽  
Xiaomeng Chen ◽  
...  

Bacillus subtilis Z-14 can inhibit phytopathogenic fungi, and is used as a biocontrol agent for wheat take-all disease. The present study used the soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), which causes wheat take-all disease, and the soil microbial community as indicators, and investigated the antifungal effects of fengycin and iturin A purified from strain Z-14 using high performance liquid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, respectively. The results showed that fengycin destroyed the internal structure of Ggt cells by digesting the cytoplasm and organelles, forming vacuoles, and inducing hyphal shrinkage and distortion. Iturin A induced cell wall disappearance, membrane degeneration, intracellular material shrinkage, and hyphal fragmentation. A biocontrol test demonstrated a 100% control effect on wheat take-all when wheat seedlings were treated with fengycin at 100 μg/ml or iturin A at 500 μg/ml. Iturin A and fengycin both reduced the relative abundance of Aspergillus and Gibberella. At the genus level, iturin A reduced the relative abundance of Mortierella and Myrothecium, while fengycin reduced that of Fusarium. Only fengycin treatment for 7 days had a significant effect on soil bacterial diversity.


2021 ◽  
Author(s):  
Cameron Stephens ◽  
Travis W Gannon ◽  
Marc Cubeta ◽  
Tim L. Sit ◽  
Jim Kerns

Take-all root rot is a disease of ultradwarf bermudagrass putting greens caused by Gaeumannomyces graminis (Gg), Gaeumannomyces sp. (Gx), Gaeumannomyces graminicola (Ggram), Candidacolonium cynodontis (Cc), and Magnaporthiopsis cynodontis (Mc). Many etiological and epidemiological components of this disease remain unknown. Improving pathogen identification and our understanding of the aggressiveness of these pathogens along with growth at different temperatures will advance our knowledge of disease development to optimize management strategies. Take-all root rot pathogens were isolated from symptomatic bermudagrass root and stolon pieces from 16 different golf courses. Isolates of Gg, Gx, Ggram, Cc, and Mc were used to inoculate ‘Champion’ bermudagrass in an in planta aggressiveness assay. Each pathogen was also evaluated at 10, 15, 20, 25, 30, and 35C to determine growth temperature optima. Infected plant tissue was used to develop a real-time PCR high resolution melt assay for pathogen detection. This assay was able to differentiate each pathogen directly from infected plant tissue using a single primer pair. In general, Ggram, Gg, and Gx were the most aggressive while Cc and Mc exhibited moderate aggressiveness. Pathogens were more aggressive when incubated at 30C compared to 20C. While they grew optimally between 24.4 and 27.8C, pathogens exhibited limited growth at 35C and no growth at 10C. These data provide important information on this disease and its causal agents that may improve take-all root rot management.


Author(s):  
Anneli Wennman ◽  
Ernst H. Oliw ◽  
Saeid Karkehabadi

Lipoxygenases constitute a family of nonhaem metal enzymes with catalytic iron or, occasionally, catalytic manganese. Lipoxygenases oxidize polyunsaturated fatty acids with position specificity and stereospecificity to hydroperoxides, which contribute to inflammation and the development of cancer. Little is known about the structural differences between lipoxygenases with Fe or Mn and the metal-selection mechanism. APichia pastorisexpression system was used for the production of the manganese lipoxygenase of the take-all fungus of wheat,Gaeumannomyces graminis. The active enzyme was treated with α-mannosidase, purified to apparent homogeneity and subjected to crystal screening and X-ray diffraction. The crystals diffracted to 2.6 Å resolution and belonged to space groupC2, with unit-cell parametersa= 226.6,b= 50.6,c= 177.92 Å, β = 91.70°.


2011 ◽  
Vol 101 (12) ◽  
pp. 1481-1491 ◽  
Author(s):  
Ming-Ming Yang ◽  
Dmitri V. Mavrodi ◽  
Olga V. Mavrodi ◽  
Robert F. Bonsall ◽  
James A. Parejko ◽  
...  

Take-all disease of wheat caused by the soilborne fungus Gaeumannomyces graminis var. tritici is one of the most important root diseases of wheat worldwide. Bacteria were isolated from winter wheat from irrigated and rainfed fields in Hebei and Jiangsu provinces in China, respectively. Samples from rhizosphere soil, roots, stems, and leaves were plated onto King's medium B agar and 553 isolates were selected. On the basis of in vitro tests, 105 isolates (19% of the total) inhibited G. graminis var. tritici and all were identified as Pseudomonas spp. by amplified ribosomal DNA restriction analysis. Based on biocontrol assays, 13 strains were selected for further analysis. All of them aggressively colonized the rhizosphere of wheat and suppressed take-all. Of the 13 strains, 3 (HC9-07, HC13-07, and JC14-07, all stem endophytes) had genes for the biosynthesis of phenazine-1-carboxylic acid (PCA) but none had genes for the production of 2,4-diacetylphloroglucinol, pyoluteorin, or pyrrolnitrin. High-pressure liquid chromatography (HPLC) analysis of 2-day-old cultures confirmed that HC9-07, HC13-07, and JC14-07 produced PCA but no other phenazines were detected. HPLC quantitative time-of-flight 2 mass-spectrometry analysis of extracts from roots of spring wheat colonized by HC9-07, HC13-07, or Pseudomonas fluorescens 2-79 demonstrated that all three strains produced PCA in the rhizosphere. Loss of PCA production by strain HC9-07 resulted in a loss of biocontrol activity. Analysis of DNA sequences within the key phenazine biosynthesis gene phzF and of 16S rDNA indicated that strains HC9-07, HC13-07, and JC14-07 were similar to the well-described PCA producer P. fluorescens 2-79. This is the first report of 2-79-like bacteria being isolated from Asia.


1991 ◽  
Vol 31 (5) ◽  
pp. 645 ◽  
Author(s):  
GM Murray ◽  
DP Heenan ◽  
AC Taylor

The incidence of take-all of wheat, caused by Gaeumannomyces graminis var. tritici (Ggt), and eyespot, caused by Tapesia yallundae, was examined in a long-term rotation-tillage experiment at Wagga Wagga, N.S.W. Take-all occurred in years of higher August-October rainfall from 1979 to 1984. In years with take-all, soil water in the upper 20 cm was estimated to be above permanent wilting point for the growing season. Eyespot was associated with above-average rainfall during winter and spring and was more prevalent where residues of wheat or grasses were retained. After the severe drought of 1982, take-all developed to high levels in 1983 in wheat that followed wheat, lupins or pasture when stubble was retained, but was reduced in 1984 after lupins. Take-all was reduced in the lupin-wheat rotations by removing stubble through burning or by early incorporation of stubble. Take-all incidence was less in wheat that followed grazed pasture than after mown pasture. Where stubble was retained, Ggt survived on stubble from wheat in 1981, through the drought of 1982, to infect wheat in 1983, but inoculum did not survive on stubble through the wet season of 1983 to infect wheat in 1984. Regression analysis indicated that take-all was negatively correlated with yield but eyespot was not. Take-all reduced yield by reducing kernel mass in 1 year and by reducing kernels per cm2 in 2 other years. Soil water conditions that were associated with take-all development from 1979 to 1984 occurred in 50% of years from 1960 to 1989.


Sign in / Sign up

Export Citation Format

Share Document