Mismatched Heteroepitaxial Growth and Strain Relaxation

2007 ◽  
pp. 161-248 ◽  
2011 ◽  
Vol 1324 ◽  
Author(s):  
Y. Wang ◽  
P. Ruterana ◽  
L. Desplanque ◽  
S. El Kazzi ◽  
X. Wallart

ABSTRACTHigh resolution transmission electron microscopy in combination with geometric phase analysis is used to investigate the interface misfit dislocations, strain relaxation, and dislocation core behavior versus the surface treatment of the GaAs for the heteroepitaxial growth of GaSb. It is pointed out that Sb-rich growth initiation promotes the formation of a high quality network of Lomer misfit dislocations that are more efficient for strain relaxation.


Hyomen Kagaku ◽  
1994 ◽  
Vol 15 (6) ◽  
pp. 354-358
Author(s):  
Takashi NOMURA ◽  
Masahiko YAMANAKA ◽  
Masahiro YOSHIKAWA ◽  
Kenji ISHIKAWA ◽  
Minoru HAGINO

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 624
Author(s):  
Ruozheng Wang ◽  
Fang Lin ◽  
Qiang Wei ◽  
Gang Niu ◽  
Hong-Xing Wang

This paper investigates the formation and propagation of defects in the heteroepitaxial growth of single-crystal diamond with a thick film achieving 500 µm on Ir (001)/Al2O3 substrate. The growth of diamond follows the Volmer–Weber mode, i.e., initially shows the islands and subsequently coalesces to closed films. The films’ strain imposed by the substrate gradually relaxed as the film thickness increased. It was found that defects are mainly located at the diamond/Ir interface and are then mainly propagated along the [001] direction from the nucleation region. Etching pits along the [001] direction formed by H2/O2 plasma treatment were used to show defect distribution at the diamond/Ir/Al2O3 interface and in the diamond bulk, which revealed the reduction of etching pit density in diamond thick-film surface. These results show the evident impact of the thickness on the heteroepitaxially grown diamond films, which is of importance for various device applications.


Sign in / Sign up

Export Citation Format

Share Document