Prediction of Freezing Time and Design of Food Freezers

Author(s):  
Donald Cleland ◽  
Kenneth Valentas
Keyword(s):  
2019 ◽  
Vol 35 (4) ◽  
pp. 73-78
Author(s):  
S.E. Gostischeva ◽  
D.V. Rostovtseva ◽  
G.F. Ivanova ◽  
A.V. Kostrominov ◽  
M.V. Pilipenko

The optimization of the drying schedule has been carried out to improve the quality indicators of the live plague vaccine. Based on the data obtained on the eutectic point of the vaccine suspension, the freezing temperature and freezing time were set to -50 °С and 6-7 h, respectively. A pressure of 40 mTorr over the surface of the drying suspension and 20 mTorr during the desorption were shown to be the best conditions for sublimation. The drying tests with different options for the shelf heating rate, vacuum depth and duration of intermediate temperature indicators were carried out to develop the improved freeze-drying mode providing the selection of the most adapted bacteria. A vaccine lyophilized under the developed conditions has low residual moisture (up to 2%) and high viability index that persists over the whole shelf life. lyophilization, sublimation, eutectic, live plague vaccine, residual moisture, viability


2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Kit C. Myers ◽  
Lauren Jade Martin
Keyword(s):  

1983 ◽  
Vol 48 (3) ◽  
pp. 909-913 ◽  
Author(s):  
A. MICHELIS ◽  
A. CALVELO
Keyword(s):  

2018 ◽  
Vol 53 ◽  
pp. 01038
Author(s):  
Guiqiang Wang ◽  
Xiaohang Cheng ◽  
Zhiqiangè Kang ◽  
Guohui Feng

Currently most food products are cooled and frozen in air-blast cold storage to prolong storage time. The airflow field distribution in storage has a great impact on the process of food freezing and energy cost by that. In this paper, a transient model of food freezing considering airflow field was developed to simulation the temperature profile of air and food products during freezing process. A lumped parameter model was used to predict the temperature and moisture profile of air, which connected all other components together, such as air coolers, food products, envelop enclosure and refrigeration system. A finite difference method was employed to model the heat transfer inside food products during freezing, where the mass transfer was neglected as the food products were wrapped with polystyrene films. Unit load factor method was applied to calculate the sensible heat refrigeration capacity and thus the total capacity of air coolers. The simulation was conducted on a large cold storage filled with large quantities of packaged food products. Results show that there are great differences in airflow field distribution at different locations in cold storage, which lead to spacial differences in freezing time required. Inappropriate set point of freezing time prolongs freezing process unnecessarily and leads to extra energy consumption. Operational mode of air coolers has a great impact on the total energy consumption, as they consume energy themselves and release equivalent heat into storage simultaneously.


1991 ◽  
Vol 56 (4) ◽  
pp. 1072-1075 ◽  
Author(s):  
SIEW LIAN CHUNG ◽  
JOHN H. MERRITT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document