SETRAC – A sediment routing model for steep torrent channels

Author(s):  
D Rickenmann ◽  
K Friedl ◽  
M Chiari
Keyword(s):  
2016 ◽  
Vol 34 ◽  
pp. 84-98 ◽  
Author(s):  
Jian-Gang Wang ◽  
Fu-Yuan Wu ◽  
Eduardo Garzanti ◽  
Xiumian Hu ◽  
Wei-Qiang Ji ◽  
...  

1995 ◽  
Vol 19 (4) ◽  
pp. 500-519 ◽  
Author(s):  
A.P. Nicholas ◽  
P.J. Ashworth ◽  
M.J. Kirkby ◽  
M.G. Macklin ◽  
T. Murray

Variations in fluvial sediment transport rates and storage volumes have been described previously as sediment waves or pulses. These features have been identified over a wide range of temporal and spatial scales and have been categorized using existing bedform classifications. Here we describe the factors controlling the generation and propagation of what we term sediment slugs. These can be defined as bodies of clastic material associated with disequilibrium conditions in fluvial systems over time periods above the event scale. Slugs range in magnitude from unit bars (Smith, 1974) up to sedimentary features generated by basin-scale sediment supply disturbances (Trimble, 1981). At lower slug magnitudes, perturbations in sediment transport are generated by local riverbank and/or bed erosion. Larger-scale features result from the occurrence of rare high- magnitude geomorphic events, and the impacts on water and sediment production of tectonics, glaciation, climate change and anthropogenic influences. Simple sediment routing functions are presented which may be used to describe the propagation of sediment slugs in fluvial systems. Attention is drawn to components of the fluvial system where future research is urgently required to improve our quantitative understanding of drainage-basin sediment dynamics.


2016 ◽  
Vol 4 (3) ◽  
pp. 591-605 ◽  
Author(s):  
Kurt S. Imhoff ◽  
Andrew C. Wilcox

Abstract. Sediment routing fundamentally influences channel morphology and the propagation of disturbances such as debris flows. The transport and storage of bedload particles across headwater channel confluences, which may be significant nodes of the channel network in terms of sediment routing, morphology, and habitat, are poorly understood, however. We investigated patterns and processes of sediment routing through headwater confluences by comparing them to published results from lower-gradient confluences and by comparing the dispersive behavior of coarse bedload particles between headwater confluence and non-confluence reaches. We addressed these questions with a field tracer experiment using passive-integrated transponder and radio-frequency identification technology in the East Fork Bitterroot River basin, Montana, USA. Within the confluence zone, tracers tended to be deposited towards scour-hole and channel margins, suggesting narrow, efficient transport corridors that mirror those observed in prior studies, many of which are from finer-grained systems. Coarse particles in some confluence reaches experienced reduced depositional probabilities within the confluence relative to upstream and downstream of the confluence. Analysis of particle transport data suggests that variation in the spatial distribution of coarse-sediment particles may be enhanced by passing through confluences, though further study is needed to evaluate confluence effects on dispersive regimes and sediment routing on broader spatial and temporal scales.


Author(s):  
Martin Struck ◽  
John D. Jansen ◽  
Toshiyuki Fujioka ◽  
Alexandru T. Codilean ◽  
David Fink ◽  
...  

Author(s):  
Kazimierz Banasik ◽  
J. Mitchell

Conceptual model of sedimentgraph from flood events in a small agricultural watershed A procedure for predicting the sediment graph (i.e. the suspended sediment flux), from a small river catchment by heavy rainfall, has been developed using the concept of an instantaneous unit hydrograph (IUH) and dimensionless sediment concentration distribution (DSCD). A formula for instantaneous unit sedimentgraph (IUSG) is presented, and a procedure for estimating the sediment routing coefficient, which is a key parameter of the IUSG, based on measured data of rainfall-runoff-suspended sediment is applied. Field data from a small, field sized agricultural basin, lacated in center of Illinois has been used for analizing lag times for runoff (LAG) and sediment yield (LAGs). Assumptions about sediment generated during rainfall events are discussed.


2021 ◽  
Author(s):  
Marina Dottore Stagna ◽  
Vittorio Maselli ◽  
Djordje Grujic ◽  
Pamela Reynolds ◽  
David Reynolds ◽  
...  

<p>The East African Rift Systems (EARS) is a modern example of a divergent plate boundary at early stages of development. In Tanzania, the rift has evolved in two branches since the Early Miocene. In addition, recent studies have proposed the existence of a marine branch of the rift in the western Indian Ocean, corresponding to the Kerimbas Graben – Davie Ridge (DR) system offshore northern Mozambique and southern Tanzania. North of this region, putative passive margin structures are present: the islands of Zanzibar and Pemba, and the troughs that separate them from the mainland. Although different theories for their formation have been proposed, a clear understanding of how the islands relate to the regional tectonic regime and the effect on the deep-water sediment routing system is lacking. </p><p>In this study, we use 2D seismic reflection profiles and exploration wells to investigate the Oligocene to recent stratigraphy offshore northern Tanzania to examine the following two questions: When did the Pemba and Zanzibar islands form? And how does the evolution of deep-water depositional systems record rift tectonics? Regional correlation of dated seismic horizons, integrated with 3D reconstruction of canyons/channels network through time, allow understanding of the main depositional events and their timing. A net decrease in the number of slope channels is visible offshore Pemba during the middle-late Miocene, which we interpreted to mark the onset of the uplift of the island. At the same time, deep-water channels were still aggrading offshore Zanzibar, indicating that the uplift of this island occurred later, likely during the late Miocene to early Pliocene. The uplift of the islands promoted the formation of a newly discovered giant canyon, characterized by a modern width of > 30 km and depth of > 485 m at > 2,200 m water depth.</p><p>The timing of the islands’ uplift indicates a potential relation with the EARS tectonics. While the structures which form the anticlines of Pemba and Zanzibar Islands may be related to Tertiary (EARS) inversion of Mesozoic-aged rift faults,  numerous high-angle normal faults, both antithetic and synthetic, dissect the post-Oligocene stratigraphy. These create horsts and grabens on a variety of scales, some of which (e.g. Kerimbas Graben and Zanzibar/Pemba trough) show comparative shape and size respect to onshore rift basins. The stratigraphic evolution of deep-water channel systems provides a tape-recorder with which to determine the modification of EARS’ tectonics on sedimentation of the older Tanzania margin.</p><p>Supported by these new results, we propose a new alternative conceptual model for the evolution of the central East African margin during the Neogene and Quaternary, highlighting the main tectonic structures and their timing of formation.</p>


2021 ◽  
Author(s):  
Suresh Kumar ◽  
Ravinder Pal Singh ◽  
Justin George Kalambukattu

Abstract Daily surface runoff, sediment and nutrient loss data collected from a watershed located in Uttarakhand state of Indian Himalayan region, in year 2010-2011 and of which half of the events data were used for calibration and remaining for validation. Model was calibrated for surface runoff, sediment loss and nutrient loss to optimize the input given to the model to predict the sediment loss, erosion and nutrient loss. The calibration was done by changing the sensitive parameters. Analysis showed that SCS CN number was found most sensitive to runoff, followed by saturated hydraulic conductivity, available water-holding capacity, CN retention parameter and C factor whereas erosion control practice (P) factor was found to be most sensitive, followed by C factor, sediment routing coefficient, average upland slope and soil erodibility (K) factor for the sediment and nutrient loss. APEX model calibrated for the watershed and it predicted quite well for the surface runoff (r=0.92, NSE=0.50), sediment loss (r=0.88, NSE=0.61 and nutrients of total carbon (r=0.78, NSE=0.59) and fairly for total nitrogen (r=0.77, NSE=0.19). Surface runoff was predicted well for low and medium rainfall; however, it was over predicted for high rainfall events. Over prediction may be attributed to the unaccountable conservation measures and practices which were not accounted by the model. Similarly, sediment loss was estimated on daily basis at the watershed scale and was well predicted for low and medium rainfalls but under-estimated for high rainfall events. The area is prone to landslips occurred at high rainfall events was not accounted by the model that may be a reason for under prediction of sediment loss by the model.


2021 ◽  
Author(s):  
Abhishek kumar Singh ◽  
Nishith Bhatt

<p>The understanding of the sediment routing system and source-to-sink dynamics in a catchment is vital as it helps to assess areas undergoing erosion and deposition. This is significant in catchments which undergo active mining activities especially natural sand materials. The role of climate and natural erosional processes is vital in this as mining of sand is also affected by natural replenishment. In present study, we take a case study of a small catchment of 30km length ~ Chharri, situated in arid landscape of Kachchh of western India. Using geomorphic assemblage mapped using remote sensing and field investigation, we identified natural sub-sinks (depocenters) in the Chharri river valley. The investigation was validated by studying sediment profiles of the depocentral landforms in seasonal time series (pre-monsoon and post monsoon sessions). The changes in morphology, sediments accumulations were integrated to assess the natural sand replenishment in areas which had been undergoing mining activity. Based on time series data it was deduced that the small catchments in dry-land environments, the sand production and dynamics is modulated by type of vegetation, pattern in precipitation and human intervention. The results of such source-to-sink study have long-term implications on sand replenishment, mining activity and landscape evolution of such river basins.</p>


Sign in / Sign up

Export Citation Format

Share Document