Advances in Breeding of Seed-Quality Traits in Soybean

Crop Science ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 2608-2620 ◽  
Author(s):  
Azam Nikzad ◽  
Berisso Kebede ◽  
Jaime Pinzon ◽  
Jani Bhavikkumar ◽  
Rong-Cai Yang ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 719
Author(s):  
Mulusew Fikere ◽  
Denise M. Barbulescu ◽  
M. Michelle Malmberg ◽  
Pankaj Maharjan ◽  
Phillip A. Salisbury ◽  
...  

Genomic selection accelerates genetic progress in crop breeding through the prediction of future phenotypes of selection candidates based on only their genomic information. Here we report genetic correlations and genomic prediction accuracies in 22 agronomic, disease, and seed quality traits measured across multiple years (2015–2017) in replicated trials under rain-fed and irrigated conditions in Victoria, Australia. Two hundred and two spring canola lines were genotyped for 62,082 Single Nucleotide Polymorphisms (SNPs) using transcriptomic genotype-by-sequencing (GBSt). Traits were evaluated in single trait and bivariate genomic best linear unbiased prediction (GBLUP) models and cross-validation. GBLUP were also expanded to include genotype-by-environment G × E interactions. Genomic heritability varied from 0.31to 0.66. Genetic correlations were highly positive within traits across locations and years. Oil content was positively correlated with most agronomic traits. Strong, not previously documented, negative correlations were observed between average internal infection (a measure of blackleg disease) and arachidic and stearic acids. The genetic correlations between fatty acid traits followed the expected patterns based on oil biosynthesis pathways. Genomic prediction accuracy ranged from 0.29 for emergence count to 0.69 for seed yield. The incorporation of G × E translates into improved prediction accuracy by up to 6%. The genomic prediction accuracies achieved indicate that genomic selection is ready for application in canola breeding.


2017 ◽  
Vol 63 ◽  
pp. 21-27 ◽  
Author(s):  
Runfeng Wang ◽  
Manu P. Gangola ◽  
Sarita Jaiswal ◽  
Pooran M. Gaur ◽  
Monica Båga ◽  
...  

2014 ◽  
Vol 12 (S1) ◽  
pp. S65-S69 ◽  
Author(s):  
Wubin Wang ◽  
Qingyuan He ◽  
Hongyan Yang ◽  
Shihua Xiang ◽  
Guangnan Xing ◽  
...  

Annual wild soybean characterized by low 100-seed weight (100SW), high protein content (PRC) and low oil content (OIC) may have favourable exotic genes/alleles for broadening the genetic base of the cultivated soybean. To evaluate the wild alleles/segments, a chromosome segment substitution line population comprising 151 lines with N24852 (wild) as the donor and NN1138-2 (cultivated) as the recurrent parent was analysed using single-marker analysis, interval mapping, inclusive composite interval mapping and mixed linear composite interval mapping. On 14 segments of ten chromosomes, 17 quantitative trait loci (QTL) were identified, with two segments each containing two QTL for 100SW and OIC and one segment containing two QTL for PRC and OIC, respectively. All the seven wild alleles/segments for 100SW were associated with negative effects and three were associated with positive effects, but one was associated with a negative effect for PRC, and five were associated with negative effects, but one was associated with a positive effect for OIC. Except Satt216 and Sat_224 for 100SW, the identified QTL/segments have been reported from cultivated soybean mapping populations. The detected wild segments may provide materials for further characterization, cloning and pyramiding of the alleles conferring the seed-quality traits.


Sign in / Sign up

Export Citation Format

Share Document