Imaging Modalities and Medical Applications in the Ocular Surface

2012 ◽  
pp. 115-140
Author(s):  
Osmel P. Alvarez ◽  
Anat Galor ◽  
Ghada AlBayyat ◽  
Carol L. Karp

1980 ◽  
Vol 27 (3) ◽  
pp. 1155-1167
Author(s):  
Mahfuz Ahmed ◽  
Glen Wade ◽  
Keith Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Manju Devi ◽  
Sukhdip Singh ◽  
Shailendra Tiwari ◽  
Subhash Chandra Patel ◽  
Melkamu Teshome Ayana

Medical imaging is an essential technique for the diagnosis and treatment of diseases in modern clinics. Soft computing plays a major role in the recent advances in medical imaging. It handles uncertainties and improves the qualities of an image. Until now, various soft computing approaches have been proposed for medical applications. This paper discusses various medical imaging modalities and presents a short review of soft computing approaches such as fuzzy logic, artificial neural network, genetic algorithm, machine learning, and deep learning. We also studied and compared each approach used for other imaging modalities based on the certain parameter used for the system evaluation. Finally, based on comparative analysis, the possible research strategies for further development are proposed. As far as we know, no previous work examined this issue.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


1988 ◽  
Vol 21 (2) ◽  
pp. 219-244
Author(s):  
Anton N. Hasso ◽  
John A. Ledington

VASA ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 361-375 ◽  
Author(s):  
Harold Goerne ◽  
Abhishek Chaturvedi ◽  
Sasan Partovi ◽  
Prabhakar Rajiah

Abstract. Although pulmonary embolism is the most common abnormality of the pulmonary artery, there is a broad spectrum of other congenital and acquired pulmonary arterial abnormalities. Multiple imaging modalities are now available to evaluate these abnormalities of the pulmonary arteries. CT and MRI are the most commonly used cross-sectional imaging modalities that provide comprehensive information on several aspects of these abnormalities, including morphology, function, risk-stratification and therapy-monitoring. In this article, we review the role of state-of-the-art pulmonary arterial imaging in the evaluation of non-thromboembolic disorders of pulmonary artery.


VASA ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 345-359 ◽  
Author(s):  
Yuki Tanabe ◽  
Luis Landeras ◽  
Abed Ghandour ◽  
Sasan Partovi ◽  
Prabhakar Rajiah

Abstract. The pulmonary arteries are affected by a variety of congenital and acquired abnormalities. Multiple state-of-the art imaging modalities are available to evaluate these pulmonary arterial abnormalities, including computed tomography (CT), magnetic resonance imaging (MRI), echocardiography, nuclear medicine imaging and catheter pulmonary angiography. In part one of this two-part series on state-of-the art pulmonary arterial imaging, we review these imaging modalities, focusing particularly on CT and MRI. We also review the utility of these imaging modalities in the evaluation of pulmonary thromboembolism.


2012 ◽  
Vol 25 (01) ◽  
Author(s):  
XW Cui ◽  
A Ignee ◽  
B Braden ◽  
M Woenckhaus ◽  
CF Dietrich

Sign in / Sign up

Export Citation Format

Share Document