Neighborhood-Based Contingency Tables Including Errors Compensation

2019 ◽  
Vol 147 (1) ◽  
pp. 329-344 ◽  
Author(s):  
Joël Stein ◽  
Fabien Stoop

Some specific scores use a neighborhood strategy in order to reduce double penalty effects, which penalize high-resolution models, compared to large-scale models. Contingency tables based on this strategy have already been proposed, but can sometimes display undesirable behavior. A new method of populating contingency tables is proposed: pairs of missed events and false alarms located in the same local neighborhood compensate in order to give pairs of hits and correct rejections. Local tables are summed up so as to provide the final table for the whole verification domain. It keeps track of the bias of the forecast when neighborhoods are taken into account. Moreover, the scores computed from this table depend on the distance between forecast and observed patterns. This method is applied to binary and multicategorical events in a simplified framework so as to present the method and to compare the new tables with previous neighborhood-based contingency tables. The new tables are then used for the verification of two models operational at Météo-France: AROME, a high-resolution model, and ARPEGE, a large-scale global model. The comparison of several contingency scores shows that the importance of the double penalty decreases more for AROME than for ARPEGE when the neighboring size increases. Scores designed for rare events are also applied to these neighborhood-based contingency tables.

2016 ◽  
Author(s):  
R. J. Haarsma ◽  
M. Roberts ◽  
P. L. Vidale ◽  
C. A. Senior ◽  
A. Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest the possibility for significant changes in both large-scale aspects of circulation, as well as improvements in small-scale processes and extremes. However, such high resolution global simulations at climate time scales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centers and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other MIPs. Increases in High Performance Computing (HPC) resources, as well as the revised experimental design for CMIP6, now enables a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility to extend to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulation. HighResMIP thereby focuses on one of the CMIP6 broad questions: “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


2010 ◽  
Vol 10 (9) ◽  
pp. 4221-4239 ◽  
Author(s):  
M. Lin ◽  
T. Holloway ◽  
G. R. Carmichael ◽  
A. M. Fiore

Abstract. Understanding the exchange processes between the atmospheric boundary layer and the free troposphere is crucial for estimating hemispheric transport of air pollution. Most studies of hemispheric air pollution transport have taken a large-scale perspective using global chemical transport models with fairly coarse spatial and temporal resolutions. In support of United Nations Task Force on Hemispheric Transport of Air Pollution (TF HTAP; www.htap.org), this study employs two high-resolution atmospheric chemistry models (WRF-Chem and CMAQ; 36×36 km) driven with chemical boundary conditions from a global model (MOZART; 1.9×1.9°) to examine the role of fine-scale transport and chemistry processes in controlling pollution export and import over the Asian continent in spring (March 2001). Our analysis indicates the importance of rapid venting through deep convection that develops along the leading edge of frontal system convergence bands, which are not adequately resolved in either of two global models compared with TRACE-P aircraft observations during a frontal event. Both regional model simulations and observations show that frontal outflows of CO, O3 and PAN can extend to the upper troposphere (6–9 km). Pollution plumes in the global MOZART model are typically diluted and insufficiently lofted to higher altitudes where they can undergo more efficient transport in stronger winds. We use sensitivity simulations that perturb chemical boundary conditions in the CMAQ regional model to estimate that the O3 production over East Asia (EA) driven by PAN decomposition contributes 20% of the spatial averaged total O3 response to European (EU) emission perturbations in March, and occasionally contributes approximately 50% of the total O3 response in subsiding plumes at mountain observatories (at approximately 2 km altitude). The response to decomposing PAN of EU origin is strongly affected by the O3 formation chemical regimes, which vary with the model chemical mechanism and NOx/VOC emissions. Our high-resolution models demonstrate a large spatial variability (by up to a factor of 6) in the response of local O3 to 20% reductions in EU anthropogenic O3 precursor emissions. The response in the highly populated Asian megacities is 40–50% lower in our high-resolution models than the global model, suggesting that the source-receptor relationships inferred from the global coarse-resolution models likely overestimate health impacts associated with intercontinental O3 transport. Our results highlight the important roles of rapid convective transport, orographic forcing, urban photochemistry and heterogeneous boundary layer processes in controlling intercontinental transport; these processes may not be well resolved in the large-scale models.


2016 ◽  
Vol 9 (11) ◽  
pp. 4185-4208 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Malcolm J. Roberts ◽  
Pier Luigi Vidale ◽  
Catherine A. Senior ◽  
Alessio Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


2015 ◽  
Vol 28 (14) ◽  
pp. 5549-5574 ◽  
Author(s):  
Koichi Sakaguchi ◽  
L. Ruby Leung ◽  
Chun Zhao ◽  
Qing Yang ◽  
Jian Lu ◽  
...  

Abstract This study presents a diagnosis of a multiresolution approach using the Model for Prediction Across Scales–Atmosphere (MPAS-A) for simulating regional climate. Four Atmospheric Model Intercomparison Project (AMIP) experiments were conducted for 1999–2009. In the first two experiments, MPAS-A was configured using global quasi-uniform grids at 120- and 30-km grid spacing. In the other two experiments, MPAS-A was configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America and embedded in a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VRs reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aquaplanet simulations, characteristics of the global high-resolution simulation in moist processes developed only near the boundary of the refined region. In contrast, AMIP simulations with VR grids can reproduce high-resolution characteristics across the refined domain, particularly in South America. This finding indicates the importance of finely resolved lower boundary forcings such as topography and surface heterogeneity for regional climate and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Upscale effects from the high-resolution regions on a large-scale circulation outside the refined domain are observed, but the effects are mainly limited to northeastern Asia during the warm season. Together, the results support the multiresolution approach as a computationally efficient and physically consistent method for modeling regional climate.


2018 ◽  
Vol 31 (17) ◽  
pp. 6711-6727 ◽  
Author(s):  
Xiaolong Chen ◽  
Peili Wu ◽  
Malcolm J. Roberts ◽  
Tianjun Zhou

The amount of rainfall during June and July along the mei-yu front contributes about 45% to the total summer precipitation over the Yangtze River valley. How it will change under global warming is of great concern to the people of China because of its particular socioeconomic importance, but climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) show large uncertainties. This paper examines model resolution sensitivity and reports large differences in projected future summer rainfall along the mei-yu front between a low-resolution (Gaussian N96 grid, ~1.5° latitude–longitude) and a high-resolution (N216, ~0.7°) version of the Hadley Centre’s latest climate model, the HadGEM3 Global Coupled Configuration 2.0 (HadGEM3-GC2). The high-resolution model projects large increases of summer rainfall under two representative concentration pathway scenarios (RCP8.5 and RCP4.5) whereas the low-resolution model shows a decrease. A larger increase of projected mei-yu rainfall in higher-resolution models is also observed across the CMIP5 ensemble. These differences can be explained in terms of enhanced moist static energy advection and moisture convergence by stationary eddies in the high-resolution model. A large-scale manifestation of the anomalous stationary eddies is the contrasting response to the same warming scenario by the western North Pacific subtropical high, which is almost unchanged in N216 but retreats evidently eastward in N96, reducing the southwesterly flow and consequently moisture supply to the mei-yu front. Further increases in model resolution to resolve parameterized processes and detailed orographic features will hopefully reduce the spread in future climate projections.


2021 ◽  
Author(s):  
Alexandre Stegner ◽  
Briac Le Vu ◽  
Franck Dumas ◽  
Mohamed Ghannami ◽  
Amandine Nicolle ◽  
...  

<p>Thanks to a Observing System Simulation Experiment (OSSE) that simulate the along-track satellite measuring process on the sea surface of the high resolution model CROCO-MED60v40-15-16 we investigate how the reliability and the accuracy of the detected eddies are influenced by the satellite sampling and the mapping procedure. The main result of this study is that there is that there is a strong cyclone-anticyclone asymmetry of the eddy detection on the altimetry products AVISO/CMEMS in the Mediterranean Sea. Large scale cyclones having a characteristic radius larger than the local deformation radius are much less reliable than large scale anticyclones. We estimate, that less than 60% of these cyclones detected on gridded altimetry product are reliable, while more than 85% of mesoscale anticyclones are reliable. Besides, both the barycenter and the size of these mesoscale anticyclones are relatively accurate. This asymmetry comes from the difference of stability between cyclones and anticyclones. Large mesoscale cyclones often splits into smaller sub mesoscale structures hav ing a rapid dynamical evolution. The high resolution model CROCO-MED60v40 shows that this complex dynamic is too fast and too small to be accurately captured by the gridded altimetry products based on a strong spatio-temporal  interpolation. The later smooth out this sub mesoscale dynamics and tend to generate an excessive number of unrealistic (i.e. unreliable) mesoscale cyclones in comparison with the reference field. On the other hand, large mesoscale anticyclones,  which are more robust and that evolve more slowly, can be spatially resolved and accurately tracked by standard altimetry products.<span>  </span>However, we confirm that gridded altimetry products have a systematic bias on the eddy intensity and especially for anticyclones. The azimuthal geostrophic velocities are always underestimated on the AVISO/CMEMS products even for large mesoscale anticyclones.<span> </span></p>


Eos ◽  
2016 ◽  
Author(s):  
Sarah Stanley

A lower-resolution model is sufficient to capture air-sea interactions, but a high-resolution model better simulates average sea surface temperatures in the North Atlantic.


2011 ◽  
Vol 4 (2) ◽  
pp. 843-868 ◽  
Author(s):  
D. F. Tang ◽  
S. Dobbie

Abstract. Complex physical systems can often be simulated using very high-resolution models but this is not always practical because of computational restrictions. In this case the model must be simplified or parameterised, but this is a notoriously difficult process that often requires the introduction of "model assumptions" that are hard or impossible to justify. Here we introduce a new approach to parameterising models. The approach makes use of a newly developed computer program, which we call iGen, that analyses the source code of a high-resolution model and formally derives a much faster parameterised model that closely approximates the original, reporting bounds on the error introduced by any approximations. These error bounds can be used to formally justify use of the parameterised model in subsequent numerical experiments. Using increasingly complex physical systems as examples we illustrate that iGen has the ability to produce parameterisations that run typically orders of magnitude faster than the underlying, high-resolution models from which they are derived and show that iGen has the potential to become an important tool in model development.


2011 ◽  
Vol 4 (3) ◽  
pp. 785-795 ◽  
Author(s):  
D. F. Tang ◽  
S. Dobbie

Abstract. Complex physical systems can often be simulated using very high resolution models but this is not always practical because of computational restrictions. In this case the model must be simplified or parameterised in order to make it computationally tractable. A parameterised model is created using an ad-hoc selection of techniques which range from the formal to the purely intuitive, and as a result it is very difficult to objectively quantify the fidelity of the model to the physical system. It is rare that a parameterised model can be formally shown to simulate a physical system to within some bounded error. Here we introduce a new approach to parameterising models which allows error to be formally bounded. The approach makes use of a newly developed computer program, which we call iGen, that analyses the source code of a high-resolution model and formally derives a much faster, parameterised model that closely approximates the original, reporting bounds on the error introduced by any approximations. These error bounds can be used to formally justify conclusions about a physical system based on observations of the model's behaviour. Using increasingly complex physical systems as examples we illustrate that iGen has the ability to produce parameterisations that run typically orders of magnitude faster than the underlying, high-resolution models from which they are derived.


Sign in / Sign up

Export Citation Format

Share Document