Investigation of flint glass for partial replacement of fine aggregate in fly ash cement-based mortars

Author(s):  
A Ngadimin ◽  
K Vessalas ◽  
P Thomas ◽  
P Hamedanimojarrad
Author(s):  
Jamshed Alam

An experimental analysis was conducted to study the effects of using copper slag as a fine aggregate (FA) and the effect of fly ash as partial replacement of cement on the properties high strength concrete. In this analysis total ten concrete mixtures were prepared, out of which five mixes containing different proportions of copper slag ranging from 0% (for the control mix) to 75% were prepared and remaining five mixes containing fly ash as partial replacement of cement ranging from 6% to 30% (all mixes contains 50% copper slag as sand replacements). Concrete matrix were tested for compressive strength, tensile strength and flexural strength tests. Addition of copper slag as sand replacement up to 50% yielded comparable strength with that of the control matrix. However, further additions of copper slag, caused reduction in strength due to an increment of the free water content in the mix. Concrete mix with 75% copper slag replacement gave the lowest compressive strength value of approximately 80 MPa at 28 days curing period, which is almost 4% more than the strength of the control mix. For this concrete containing 50% copper slag, fly ash is introduced in the concrete to achieve the better compressive, split and flexural strengths. It was also observed that, introduction of the fly ash gave better results than concrete containing 50% copper slag. When concrete prepared with 18 % of fly ash, the strength has increased approximately 4%, and strength decreased with further replacements of the cement with fly ash. Hence, it is suggested that 50% of copper slag can be used as replacement of sand and 18% fly ash can be used as replacement of cement in order to obtain high strength concrete.


The utilization of thermal power plant waste ashes (fly ash and bottom ash) in concrete as partial replacement of cement and sand could be an important step toward development of sustainable, user-friendly and economical infrastructure. For this purpose, different concrete mixes were considered at constant binder content of 300kg/m3 and differ water-to-binder ratio (w / (c + f) mainly as 0.5 , 0.55 and 0.6. Also six wide range of fly ash replacement levels (f/c ratio) namely 0, 0.11, 0.25, 0.43, 0.67 and 1.0 were introduced in the experimental scheme. The 3-days to 180 days compressive strengths of FACB was measured at interval of 3, 7, 28, 56 and 90 days. This study also presents a relationship between the ratios of split tensile (ft) strength to compressive strength (fc). It is applicable to lean concrete having consideration of curing period at early age (3day) to long term (180days). The results of this investigation are principally important, because the comprehensive information on the dependability of the relationships has not been available for (w/c+f) and bottom ash combination. The investigational results of this work are indicated that waste-Bottom ash with the regular sizes can be used successfully as a fine aggregate in fly ash concrete (FAC). The Study also reflected in finding constant “k” by ACI code equation for fly ash and bottom ash mix concrete. It has obtained between 0.337 - 0.504. This could be useful in finding splitting tensile strength when concrete carrying fly ash and bottom ash.


2021 ◽  
Vol 9 (02) ◽  
pp. 694-702
Author(s):  
K. Hariharan ◽  
◽  
A. Krishna Moorthy ◽  

The aim of the project is to replace cement with fly ash and course aggregate with Ethyl Vinyl Acetate (EVA) in paver block. In this thesis paver block design is by using cement concrete mixture of mix design M30 which is composed of 10mm coarse aggregate cement and fine aggregate (M-sand).In this thesis the cement is partially replaced with fly ash and partial replacement of EVA with coarse aggregate in paver block at various level of 5, 10, 15, and 20 percentage of its weight. The paver block curing process is done for 7days and 28days. After curing it is checked for its compression strength, water absorption test and densitytest.


Author(s):  
Wasiq Maqbool Peer

Abstract: Pervious concrete is a concrete containing little or no fine aggregate; it consists of coarse aggregate and cement paste. It seems pervious concrete would be a natural choice for use in structural applications in this age of ‘green building’. It consumes less raw material than normal concrete (no sand), it provides superior insulation values when used in walls, and through the direct drainage of rainwater, it helps recharge groundwater in pavement applications. Due to increase in construction and demolition activities all over the world, the waste concrete after the destruction is not used for any purpose which leads to loss of economy of the country. India is a developing country where urbanization is increasing rapidly which in turn leading to increase of drainage facilities. Pervious concrete helps to allow the water flow into the ground due to interconnected pores. Natural aggregate is becoming scarce, production and shipment is becoming more difficult. In order to overcome this problem, there is need to find a by-product, which can be used to replace the aggregate in conventional concrete mix. Keywords: Pervious Concrete, Partial Replacement, Fly Ash, Cement, Compressive Strength,


Sign in / Sign up

Export Citation Format

Share Document