scholarly journals PARTIAL REPLACEMENT OF CEMENT AND FINE AGGREGATE BY USING FLY ASH AND GLASS AGGREGATE

2013 ◽  
Vol 02 (13) ◽  
pp. 351-355
Author(s):  
T.Phani Madhavi .
Author(s):  
Jamshed Alam

An experimental analysis was conducted to study the effects of using copper slag as a fine aggregate (FA) and the effect of fly ash as partial replacement of cement on the properties high strength concrete. In this analysis total ten concrete mixtures were prepared, out of which five mixes containing different proportions of copper slag ranging from 0% (for the control mix) to 75% were prepared and remaining five mixes containing fly ash as partial replacement of cement ranging from 6% to 30% (all mixes contains 50% copper slag as sand replacements). Concrete matrix were tested for compressive strength, tensile strength and flexural strength tests. Addition of copper slag as sand replacement up to 50% yielded comparable strength with that of the control matrix. However, further additions of copper slag, caused reduction in strength due to an increment of the free water content in the mix. Concrete mix with 75% copper slag replacement gave the lowest compressive strength value of approximately 80 MPa at 28 days curing period, which is almost 4% more than the strength of the control mix. For this concrete containing 50% copper slag, fly ash is introduced in the concrete to achieve the better compressive, split and flexural strengths. It was also observed that, introduction of the fly ash gave better results than concrete containing 50% copper slag. When concrete prepared with 18 % of fly ash, the strength has increased approximately 4%, and strength decreased with further replacements of the cement with fly ash. Hence, it is suggested that 50% of copper slag can be used as replacement of sand and 18% fly ash can be used as replacement of cement in order to obtain high strength concrete.


The utilization of thermal power plant waste ashes (fly ash and bottom ash) in concrete as partial replacement of cement and sand could be an important step toward development of sustainable, user-friendly and economical infrastructure. For this purpose, different concrete mixes were considered at constant binder content of 300kg/m3 and differ water-to-binder ratio (w / (c + f) mainly as 0.5 , 0.55 and 0.6. Also six wide range of fly ash replacement levels (f/c ratio) namely 0, 0.11, 0.25, 0.43, 0.67 and 1.0 were introduced in the experimental scheme. The 3-days to 180 days compressive strengths of FACB was measured at interval of 3, 7, 28, 56 and 90 days. This study also presents a relationship between the ratios of split tensile (ft) strength to compressive strength (fc). It is applicable to lean concrete having consideration of curing period at early age (3day) to long term (180days). The results of this investigation are principally important, because the comprehensive information on the dependability of the relationships has not been available for (w/c+f) and bottom ash combination. The investigational results of this work are indicated that waste-Bottom ash with the regular sizes can be used successfully as a fine aggregate in fly ash concrete (FAC). The Study also reflected in finding constant “k” by ACI code equation for fly ash and bottom ash mix concrete. It has obtained between 0.337 - 0.504. This could be useful in finding splitting tensile strength when concrete carrying fly ash and bottom ash.


2021 ◽  
Vol 9 (02) ◽  
pp. 694-702
Author(s):  
K. Hariharan ◽  
◽  
A. Krishna Moorthy ◽  

The aim of the project is to replace cement with fly ash and course aggregate with Ethyl Vinyl Acetate (EVA) in paver block. In this thesis paver block design is by using cement concrete mixture of mix design M30 which is composed of 10mm coarse aggregate cement and fine aggregate (M-sand).In this thesis the cement is partially replaced with fly ash and partial replacement of EVA with coarse aggregate in paver block at various level of 5, 10, 15, and 20 percentage of its weight. The paver block curing process is done for 7days and 28days. After curing it is checked for its compression strength, water absorption test and densitytest.


Author(s):  
Wasiq Maqbool Peer

Abstract: Pervious concrete is a concrete containing little or no fine aggregate; it consists of coarse aggregate and cement paste. It seems pervious concrete would be a natural choice for use in structural applications in this age of ‘green building’. It consumes less raw material than normal concrete (no sand), it provides superior insulation values when used in walls, and through the direct drainage of rainwater, it helps recharge groundwater in pavement applications. Due to increase in construction and demolition activities all over the world, the waste concrete after the destruction is not used for any purpose which leads to loss of economy of the country. India is a developing country where urbanization is increasing rapidly which in turn leading to increase of drainage facilities. Pervious concrete helps to allow the water flow into the ground due to interconnected pores. Natural aggregate is becoming scarce, production and shipment is becoming more difficult. In order to overcome this problem, there is need to find a by-product, which can be used to replace the aggregate in conventional concrete mix. Keywords: Pervious Concrete, Partial Replacement, Fly Ash, Cement, Compressive Strength,


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Musa Adamu ◽  
Bashar S. Mohammed ◽  
Nasir Shafiq

The rate of waste tire generation globally continues to escalate due to increase in vehicle usage. Scrap tires continue to pose serious environmental, health and aesthetic problems. Due limitation in the recycling of scrap tires, one of the most viable solution is to used crumb rubber from scrap tire as partial replacement to fine aggregate in concrete industry. This is rationalized as the production of concrete hit more than 3.8 billion cubic meters annually, therefore, it could provide a solution on conservation of natural aggregate and as well as improve properties of concrete. However, the major setback in the use of crumb rubber in concrete is loss in strength.  In this paper, crumb rubber was used to partially replaced fine aggregate at 0%, 10%, 20% and 30% by volume in roller compacted concrete for pavement applications to produce roller compacted rubbercrete (RCR) to improve its flexural strength and ductility. Several trials were done to achieve the combined grading as recommended by ACI 211.3R, and finally a combination of 55% fine aggregate, 40% coarse aggregate and 5% fine sand as mineral filler was used. In order to mitigate the effect of strength loss, silica fume and fly ash were used to replace natural fine sand as mineral fillers. The Results showed that fresh density, compressive, splitting and flexural strengths decreases with increase in partial replacement of fine aggregate with crumb rubber. However using silica fume as a mineral filler was successful in mitigating loss in compressive, tensile and flexural strengths for up to 20% crumb rubber replacement level, while fly ash as a mineral filler mitigated loss in strength for up to 10% crumb rubber compared natural fine sand mineral filler. The flexural strength was found to increase with 10% crumb rubber for all type of mineral filler


Sign in / Sign up

Export Citation Format

Share Document