Numerical studies of load bearing LSF walls under realistic design fire conditions

2014 ◽  
Vol 5 (3) ◽  
pp. 261-290 ◽  
Author(s):  
Poologanathan Keerthan ◽  
Mahen Mahendran

Cold-formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.


2017 ◽  
pp. 160-189
Author(s):  
A.D. Ariyanayagam ◽  
◽  
P. Keerthan ◽  
M. Mahendran ◽  
◽  
...  

2013 ◽  
Vol 65 ◽  
pp. 72-92 ◽  
Author(s):  
Shanmuganathan Gunalan ◽  
Prakash Kolarkar ◽  
Mahen Mahendran

Author(s):  
Petr Kuklík ◽  
Magdaléna Charvátová

The paper is focused on the influence of fire resistant coatings used on OSB boards on the fire resistance of entire light timber frame wall assemblies. Two fire tests were performed in the fire test laboratory of PAVUS, a.s. in Veselí nad Lužnicí. The fire tests were performed on a load bearing wall. The wall dimensions were 3.0 (depth) x 3.0 (height) m. According to EN 1995-1-2, the calculation for fire paints and coatings is not possible. The aim of the paper is the determination of the influence of this type of coating on the OSB board’s charring rate, the determination of the start of charring of a timber stud and the fire resistance of the whole construction.


Author(s):  
Anne K. Kawohl ◽  
Jörg Lange

Prior investigations of the load bearing capacity of bolts during fire have shown differing behaviour between bolts that were loaded by shear or by tensile loads. The interaction of the two loads has not yet been examined under fire conditions. This paper describes a preliminary test series on the post-fire performance of high-strength bolts of the property class 10.9 under combined tension and shear. The results show that how the bolt is loaded influences the load bearing capacity. It is assumed that this is also true at elevated temperatures. Further, atest set-up for experiments at elevated temperatures and a more detailed test series on the post-fire performance under combined tension and shear is presented.


2012 ◽  
Vol 53 ◽  
pp. 105-119 ◽  
Author(s):  
Poologanathan Keerthan ◽  
Mahen Mahendran

Sign in / Sign up

Export Citation Format

Share Document