Thermal Performance of Load Bearing Cold-formed Steel Walls under Fire Conditions using Numerical Studies

2014 ◽  
Vol 5 (3) ◽  
pp. 261-290 ◽  
Author(s):  
Poologanathan Keerthan ◽  
Mahen Mahendran

Cold-formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.

2017 ◽  
Vol 8 (4) ◽  
pp. 354-376 ◽  
Author(s):  
Mohamed Rusthi ◽  
Poologanathan Keerthan ◽  
Mahen Mahendran ◽  
Anthony Ariyanayagam

Purpose This research was aimed at investigating the fire performance of LSF wall systems by using 3-D heat transfer FE models of existing LSF wall system configurations. Design/methodology/approach This research was focused on investigating the fire performance of LSF wall systems by using 3-D heat transfer finite element models of existing LSF wall system configurations. The analysis results were validated by using the available fire test results of five different LSF wall configurations. Findings The validated finite element models were used to conduct a parametric study on a range of non-load bearing and load bearing LSF wall configurations to predict their fire resistance levels (FRLs) for varying load ratios. Originality/value Fire performance of LSF wall systems with different configurations can be understood by performing full-scale fire tests. However, these full-scale fire tests are time consuming, labour intensive and expensive. On the other hand, finite element analysis (FEA) provides a simple method of investigating the fire performance of LSF wall systems to understand their thermal-mechanical behaviour. Recent numerical research studies have focused on investigating the fire performances of LSF wall systems by using finite element (FE) models. Most of these FE models were developed based on 2-D FE platform capable of performing either heat transfer or structural analysis separately. Therefore, this paper presents the details of a 3-D FEA methodology to develop the capabilities to perform fully-coupled thermal-mechanical analyses of LSF walls exposed to fire in future.


2015 ◽  
Vol 6 (1) ◽  
pp. 155-173 ◽  
Author(s):  
Joseph M. Nickerson ◽  
Patrick A. Trasborg ◽  
Clay J. Naito ◽  
Charles M. Newberry ◽  
James S. Davidson

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Irindu Upasiri ◽  
Chaminda Konthesingha ◽  
Anura Nanayakkara ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

Purpose In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element modelling. Design/methodology/approach Lightweight aggregate concrete containing various aggregate types, i.e. expanded slag, pumice, expanded clay and expanded shale were studied under standard fire and hydro–carbon fire situations using validated finite element models. Results were used to derive empirical equations for determining the insulation fire ratings of lightweight concrete wall panels. Findings It was observed that autoclaved aerated concrete and foamed lightweight concrete have better insulation fire ratings compared with lightweight aggregate concrete. Depending on the insulation fire rating requirement of 15%–30% of material saving could be achieved when lightweight aggregate concrete wall panels are replaced with the autoclaved aerated or foamed concrete wall panels. Lightweight aggregate concrete fire performance depends on the type of lightweight aggregate. Lightweight concrete with pumice aggregate showed better fire performance among the normal lightweight aggregate concretes. Material saving of 9%–14% could be obtained when pumice aggregate is used as the lightweight aggregate material. Hydrocarbon fire has shown aggressive effect during the first two hours of fire exposure; hence, wall panels with lesser thickness were adversely affected. Originality/value Finding of this study could be used to determine the optimum lightweight concrete wall type and the optimum thickness requirement of the wall panels for a required application.


Author(s):  
I. R. Upasiri ◽  
K. M. C. Konthesingha ◽  
K. Poologanathan ◽  
S. M. A. Nanayakkara ◽  
B. Nagaratnam

Tribologia ◽  
2016 ◽  
Vol 266 (2) ◽  
pp. 9-24 ◽  
Author(s):  
Oday I. ABDULLAH ◽  
Laith Abed SABRI ◽  
Wassan S. Abd Al-SAHB

Most of the failures in the sliding systems occur due to the high thermal stresses, which generated at the interface between the contacting surfaces due to sliding between parts, such as friction clutches and brakes. In this paper, the thermal behaviour of a single-disc clutch is investigated. The surface temperatures of the friction clutch disc will be increased during repeated engagements, in some cases, will lead to premature failure of the clutch disc. In order to avoid this kind of failure, it the surface temperature should be calculated with high accuracy to know the maximum working temperature of the friction system. In this work, the temperature distributions are computed during four repeated engagements at regular intervals (5 s) for the same energy dissipation. Three-dimensional finite element models are used to simulate the typical friction clutch disc.


Author(s):  
Anne K. Kawohl ◽  
Jörg Lange

Prior investigations of the load bearing capacity of bolts during fire have shown differing behaviour between bolts that were loaded by shear or by tensile loads. The interaction of the two loads has not yet been examined under fire conditions. This paper describes a preliminary test series on the post-fire performance of high-strength bolts of the property class 10.9 under combined tension and shear. The results show that how the bolt is loaded influences the load bearing capacity. It is assumed that this is also true at elevated temperatures. Further, atest set-up for experiments at elevated temperatures and a more detailed test series on the post-fire performance under combined tension and shear is presented.


2014 ◽  
Vol 665 ◽  
pp. 196-202
Author(s):  
Yi Qing Guo ◽  
Ping Zhou Cao

In order to study the performance of lightweight energy-saving composite floor, the finite element models of composite floor were established, which was based on the composite floor specimens test research. The finite element models were verified rationally and correctly in the paper, through compared with the composite floor test results. The finite element model can be used to analyze the load-bearing capacity of composite floor. Various influencing factors of composite floor with simply supported end were analyzed, such as the span of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The results show that the load-bearing capacity of composite floor increases with the increase of the number of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The load-bearing capacity calculate formula of composite floor was proposed.


2012 ◽  
Vol 204-208 ◽  
pp. 3682-3685
Author(s):  
Ying Wang ◽  
Yan E Sui

This paper describes the calculation method and steps of compound insulation external wall panels who's whole board with openings. Using Finite Element Method to simulate and analysis the result,For in the engineering application of the sandwich type wall panel provides the basis.


Sign in / Sign up

Export Citation Format

Share Document