Studies on dynamic changes of the physicochemical properties in rice slurry during Fermented Rice Steamed Cake (Fagao) production

2014 ◽  
pp. 441-449
PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222174 ◽  
Author(s):  
Jie Li ◽  
Zi Teng ◽  
ShihChi Weng ◽  
Bin Zhou ◽  
Ellen R. Turner ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Guoxin Rong ◽  
Erin E. Tuttle ◽  
Ashlyn Neal Reilly ◽  
Heather A. Clark

Sensors are key tools for monitoring the dynamic changes of biomolecules and biofunctions that encode valuable information that helps us understand underlying biological processes of fundamental importance. Because of their distinctive size-dependent physicochemical properties, materials with nanometer scales have recently emerged as promising candidates for biological sensing applications by offering unique insights into real-time changes of key physiological parameters. This review focuses on recent advances in imaging-based nanosensor developments and applications categorized by their signal transduction mechanisms, namely, fluorescence, plasmonics, MRI, and photoacoustics. We further discuss the synergy created by multimodal nanosensors in which sensor components work based on two or more signal transduction mechanisms.


Author(s):  
T. M. Murad ◽  
Karen Israel ◽  
Jack C. Geer

Adrenal steroids are normally synthesized from acetyl coenzyme A via cholesterol. Cholesterol is also shown to enter the adrenal gland and to be localized in the lipid droplets of the adrenal cortical cells. Both pregnenolone and progesterone act as intermediates in the conversion of cholesterol into steroid hormones. During pregnancy an increased level of plasma cholesterol is known to be associated with an increase of the adrenal corticoid and progesterone. The present study is designed to demonstrate whether the adrenal cortical cells show any dynamic changes during pregnancy.


Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S152-S152
Author(s):  
Mette Møller ◽  
Jesper Frandsen ◽  
Grethe Andersen ◽  
Albert Gjedde ◽  
Peter Vestergaard-Poulsen

1966 ◽  
Vol 16 (03/04) ◽  
pp. 526-540 ◽  
Author(s):  
E. A Beck ◽  
D. P Jackson

SummaryThe effects of trypsin and plasmin on the functional and physicochemical properties of purified human fibrinogen were observed at various stages of proteolysis. Concentrations of plasmin and trypsin that produced fibrinogenolysis at comparable rates as measured in a pH stat produced, at similar rates, loss of precipitability of fibrinogen by heat and ammonium sulphate and alterations in electrophoretic mobility on starch gel. Trypsin produced a more rapid loss of clottability of fibrinogen and a more rapid appearance of inhibitors of the thrombin-fibrinogen clotting system than did plasmin. Consistent differences were noted between the effects of trypsin and plasmin on the immunoelectrophoretic properties of fibrinogen during the early stages of proteolysis.These results are consistent with the hypothesis that trypsin initially reacts with the same peptide bonds of fibrinogen that are split by thrombin, but these same bonds do not appear to be split initially by plasmin. Measurement of the various functional and physico-chemical changes produced by the action of trypsin and plasmin on fibrinogen can be used to recognize various stages of proteolysis.


Sign in / Sign up

Export Citation Format

Share Document