The Self-Assembly of Porphyrin Derivatives into 2D and 3D Architectures

2014 ◽  
pp. 173-206
Author(s):  
Mihaela Birdeanu ◽  
Eugenia Fagadar-Cosma
2016 ◽  
Vol 28 (3) ◽  
pp. 951-961 ◽  
Author(s):  
Chaoying Fu ◽  
Hua-ping Lin ◽  
Jennifer M. Macleod ◽  
Andrey Krayev ◽  
Federico Rosei ◽  
...  

2015 ◽  
Vol 3 (8) ◽  
pp. 1218-1227 ◽  
Author(s):  
Feng Liu ◽  
Yufei Ma ◽  
Lei Xu ◽  
Lichao Liu ◽  
Weian Zhang

A supramolecular photosensitizer delivery system has been established through the self-assembly of supramolecular amphiphiles constructed by the host–guest interaction between poly(ethylene glycol)-β-cyclodextrin (PEG-β-CD) and adamantane-terminated porphyrin derivatives bearing a disulfide bond (TPPC6-SS-Ada).


2016 ◽  
Vol 88 (10-11) ◽  
pp. 1005-1025 ◽  
Author(s):  
Elena Zaborova ◽  
Alice Six ◽  
Hanane Amokrane ◽  
Fabrice Charra ◽  
Fabrice Mathevet ◽  
...  

AbstractA series of new paraphenylene-based 2D and 3D tectons has been designed for supramolecular self-assembly on both HOPG and Au. Several versatile chemical strategies have been developed to reach the target tectons, bearing either metaparacyclophane or paraparacyclophane cores, functionalized or not, allowing the obtention soon of more complex 3D tectons bearing functional unit such as chromophores. Moreover, preliminary STM results show that these compounds can successfully self-assemble both on HOPG and Au(111) substrates at liquid-solid interface, encouraging us in finding an universal surface-confined 2D/3D molecular binding motif. This feature combined with the preliminary results of the self-assembly on the plasmonic substrate Au(111) open-up opportunities in the field of Nanoscience.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul J. Hurst ◽  
Alexander M. Rakowski ◽  
Joseph P. Patterson

Abstract The self-assembly of block copolymers into 1D, 2D and 3D nano- and microstructures is of great interest for a wide range of applications. A key challenge in this field is obtaining independent control over molecular structure and hierarchical structure in all dimensions using scalable one-pot chemistry. Here we report on the ring opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA) of poly-L-lactide-block-polyethylene glycol block copolymers into 1D, 2D and 3D nanostructures. A key feature of ROPI-CDSA is that the polymerization time is much shorter than the self-assembly relaxation time, resulting in a non-equilibrium self-assembly process. The self-assembly mechanism is analyzed by cryo-transmission electron microscopy, wide-angle x-ray scattering, Fourier transform infrared spectroscopy, and turbidity studies. The analysis revealed that the self-assembly mechanism is dependent on both the polymer molecular structure and concentration. Knowledge of the self-assembly mechanism enabled the kinetic trapping of multiple hierarchical structures from a single block copolymer.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4544 ◽  
Author(s):  
Manuela Stefanelli ◽  
Federica Mandoj ◽  
Gabriele Magna ◽  
Raffaella Lettieri ◽  
Mariano Venanzi ◽  
...  

An overview of the solvent-driven aggregation of a series of chiral porphyrin derivatives studied by optical methods (UV/Vis, fluorescence, CD and RLS spectroscopies) is herein reported. The investigated porphyrins are characterized by the presence in the meso-positions of glycol-, steroidal- and glucosteroidal moieties, conferring amphiphilicity and solubility in aqueous media to the primarily hydrophobic porphyrin platform. Aggregation of the macrocycles is driven by a change in bulk solvent composition, forming architectures with supramolecular chirality, steered by the stereogenic centers on the porphyrin peripheral positions. The aggregation behavior and chiroptical properties of the final aggregated species strongly depend on the number and stereogenicity of the ancillary groups that dictate the mutual spatial arrangement of the porphyrin chromophores and their further organization in larger structures, usually detectable by different microscopies, such as AFM and SEM. Kinetic studies are fundamental to understand the aggregation mechanism, which is frequently found to be dependent on the substrate concentration. Additionally, Molecular Mechanics calculations can give insights into the intimate nature of the driving forces governing the self-assembly process. The critical use of these combined methods can shed light on the overall self-assembly process of chirally-functionalized macrocycles, with important implications on the development of chiral porphyrin-based materials.


RSC Advances ◽  
2015 ◽  
Vol 5 (96) ◽  
pp. 78889-78901 ◽  
Author(s):  
Jin-Zhong Gu ◽  
Yan-Hui Cui ◽  
Jiang Wu ◽  
Alexander M. Kirillov

4-(5-Carboxypyridin-2-yl)isophthalic acid (H3L) was applied as a new principal building block for the self-assembly generation of mixed-ligand coordination polymers.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


Sign in / Sign up

Export Citation Format

Share Document