A novel differential position code spread spectrum system with high data transmission capability

Author(s):  
B Li ◽  
L Guo ◽  
J Wang ◽  
S Qi ◽  
Z Sun

T-Comm ◽  
2020 ◽  
Vol 14 (10) ◽  
pp. 45-52
Author(s):  
Edgar M. Dmitriyev ◽  
◽  
Eugeny V. Rogozhnikov ◽  
Andrey K. Movchan ◽  
Semyon M. Mukhamadiev ◽  
...  

In the presented article, the results of the research of the spreading spectrum technology are given and its use in communication systems based on the data transmission over power lines is considered. One of the currently existing problems of data transmission systems over power lines is the absence of a compromise solution in ensuring the required data transmission rate and communication range. Ready-made solutions existing on the market provide either high data transmission rates over short distances or a communication long-range with rates not exceeding several tens of kilobits per second. The purpose of the article is to research the application of spread spectrum technology in data transmission systems over power lines. In the course of the experiment, it was found that the joint use of OFDM technology and the spread spectrum technology makes it possible to form a solution that provides communication over power lines over a distance of tens of meters with a data transmission rate of at least 5 Mbps. This article compares the TP-Link 500 Mbps modem for broadband high-speed data transmission, and the NWEPLC-1-G3M modem for narrowband low-speed data transmission. The results of modeling a communication system with different lengths and types of spreading sequences for BPSK and QPSK modulations are presented. An assessment of the interference protection was carried out. The results of an experimental research of the spectrum spreading technology on a model of a data transmission system over power lines in terms of range and transmission rate in comparison with existing devices on the market are presented. The results obtained can be used in the design of communication systems over power lines.



Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 544-553 ◽  
Author(s):  
Wei Gao ◽  
Yunqing Zhang ◽  
Yaojun Chen

Abstract In data transmission networks, the availability of data transmission is equivalent to the existence of the fractional factor of the corresponding graph which is generated by the network. Research on the existence of fractional factors under specific network structures can help scientists design and construct networks with high data transmission rates. A graph G is named as an all fractional (g, f, n′, m)-critical deleted graph if the remaining subgraph keeps being an all fractional (g, f, m)-critical graph, despite experiencing the removal of arbitrary n′ vertices of G. In this paper, we study the relationship between neighborhood conditions and a graph to be all fractional (g, f, n′, m)-critical deleted. Two sufficient neighborhood conditions are determined, and furthermore we show that the conditions stated in the main results are sharp.



Author(s):  
Hung-Chin Jang ◽  
Yun-Jun Lee

The goal of LTE (Long Term Evolution) is to provide high data transmission rate, scalable bandwidth, low latency, high-mobility, etc. LTE employs OFDM (Orthogonal Frequency Division Multiplexing) and SC-FDMA (Single Carrier - Frequency Division Multiple Access) for downlink and uplink data transmission, respectively. As to SC-FDMA, there are two constraints in doing resource allocation. First, the allocated resource blocks (RBs) should be contiguous. Second, those of the allocated RBs are forced to use the same modulation technique. The aim of this research is to propose a QoS-constraint resource allocation scheduling to enhance data transmission for uplink SC-FDMA. The proposed scheduling is a three-stage approach. In the first stage, it uses a time domain scheduler to differentiate user equipment (UE) services according to their distinct QoS service requirements. In the second stage, it uses a frequency domain scheduler to prioritize UE services based on channel quality. In the third stage, it limits the number of times of modulation downgrade of RBs allocation in order to enhance system throughput. In the simulations, the proposed method is compared to fixed sub-carrier dynamic resource allocation method and adaptive dynamic sub-carrier resource allocation method. Simulation results show that the proposed method outperforms the other two methods in terms of throughput, transmission delay, packet loss ratio, and RB utilization.



2010 ◽  
Vol 18 (5) ◽  
pp. 5106 ◽  
Author(s):  
Qing Fang ◽  
Tsung-Yang Liow ◽  
Jun Feng Song ◽  
Kah Wee Ang ◽  
Ming Bin Yu ◽  
...  


2012 ◽  
Vol 490-495 ◽  
pp. 1090-1094
Author(s):  
Shi Hua Yan ◽  
Yong Qiang He

A transfer module based on TMS320F2812 DSP was designed to meet the needs for information exchange among multi-sensor network. It took the greatest advantages of the multi-imformation exchange interface integrated in DSP, thus to satisfy the requirement for information exchange among various networks. In the present paper, the design of hardware circuit for each single module and interface was described in detail. The data transmission capability of each interface was analysed. As results, the hardware node could run stably with both intense ability to resist interference and high transmission reliability.



2019 ◽  
Vol 1228 ◽  
pp. 012069 ◽  
Author(s):  
Yaseein Soubhi Hussein ◽  
Amresh Chetty Annan
Keyword(s):  


2014 ◽  
Vol 6 (5) ◽  
pp. 537-541 ◽  
Author(s):  
Heejong Lee ◽  
Seok-Jae Lee ◽  
Won-Sang Yoon ◽  
Sang-Min Han

An FM-ultra-wideband (UWB) system with a wideband RF carrier (WRC) is proposed for wireless body area network applications. The proposed system can control the channel power by means of an adjustable carrier bandwidth (BW), while the conventional one with a CW carrier (CWC) makes use of peak power control. The implemented WRC system performances have been evaluated for the WRC generation and digital data transmission. In addition, transmission performances have been compared with that of a conventional CWC system by bit-error-rate (BER) tests. For random data of a 29−1 pattern at a data-rate of 64 kbps, in spite of the flexible carrier BW, the WRC system has presented excellent transmission capability compared with that of the CWC system.



Sign in / Sign up

Export Citation Format

Share Document