A simplified method to estimate the Soil-Water Characteristic Curve

Author(s):  
Y Fan ◽  
E Leong
2010 ◽  
Vol 47 (12) ◽  
pp. 1382-1400 ◽  
Author(s):  
Kheng-Boon Chin ◽  
Eng-Choon Leong ◽  
Harianto Rahardjo

This paper proposes a simplified method to estimate the soil-water characteristic curve (SWCC) for both coarse- and fine-grained soils using one-point SWCC measurement and basic index properties. Parameters of the Fredlund and Xing SWCC equation were correlated with the basic properties of 60 soils: 30 soils each of coarse- and fine-grained types. Sensitivity analysis revealed that the location of the one-point measurement at matric suctions of 10 and 500 kPa gave the most reliable SWCC using the proposed method for coarse- and fine-grained soils, respectively. The validity of the proposed method was evaluated using a total of 62 soils collated from published literature with 31 soils each of the coarse- and fine-grained types. The proposed method gives a good estimation of the SWCC and uses fewer parameters when compared with existing one-point SWCC estimation methods.


2021 ◽  
Vol 337 ◽  
pp. 02002
Author(s):  
Johnatan Ramos-Rivera ◽  
Daniel Parra-Holguín ◽  
Yamile Valencia-González ◽  
Oscar Echeverri-Ramírez

In unsaturated soil mechanics, many attempts have been made to estimate the SWCC based on soil texture and grain-size distribution. This paper proposes a simplified method to estimate the soil-water characteristic curve (SWCC) for both coarse and fine-grained soils using SWCC data and machine learning computer code in the Aburra Valley. Fredlund and Xing parameters has been used to estimate the SWCC correlations. Soil samples collected from field survey were subjected to laboratory testing, SWCCs were estimated using filter paper method. Each SWCC data set from Aburra Valley was fitted with Fredlund and Xing curve using multiple regression analysis, correlations were derived for those four parameters based on predictors derived from machine learning. The proposed method gives a good estimation and low residual errors of the SWCC.


2010 ◽  
Vol 12 (3) ◽  
pp. 336-341
Author(s):  
Fei CAI ◽  
Xiaohou SHAO ◽  
Zhenyu WANG ◽  
Mingyong HUANG ◽  
Yaming ZHAI ◽  
...  

2014 ◽  
Vol 919-921 ◽  
pp. 795-799
Author(s):  
Gai Qing Dai ◽  
Dong Fang Tian ◽  
Yao Ruan ◽  
Lang Tian ◽  
You Le Wang

A new soil water characteristic curve (SWCC) experiment contemplating urea concentration is presented in the paper. We focus on the impact of the SWCC considering urea concentration test method for materials selection and introduction, experimental results, and finally, we have conducted some experiments of SWCC and obtained some valuable data which could affect urea concentration. By using linear fitting, an exponential function between water content and suction and urea concentration is established.


2011 ◽  
Vol 261-263 ◽  
pp. 1039-1043
Author(s):  
Yu You Yang ◽  
Qin Xi Zhang ◽  
Gui He Wang ◽  
Jia Xing Yu

A soil water characteristic curve (SWCC) can describe the relationship between unsaturated soil matric suction and water content. By analyzing and researching the test data of the soil water characteristic curve researchers can initially establish the SWCC equation and apply this equation to the actual engineering analysis. In another words, this article is based on the fluid-solid coupling theory of unsaturated soil used to analyze and study the problem of land subsidence caused by tunnel construction. Numerical calculations show that the coupling results agree well with the measured curve works.


1999 ◽  
Vol 36 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Daud W Rassam ◽  
David J Williams

A relationship describing the shear-strength profile of a desiccating soil deposit is essential for the purpose of analysis, especially when a numerical method is adopted where each zone in a discretised grid is assigned an elevation-dependent shear-strength value. The matric-suction profile of a desiccating soil deposit is nonlinear. Up to the air-entry value, an increase in matric suction is associated with a linear increase in shear strength. Beyond air entry, as the soil starts to desaturate, a nonlinear increase in shear strength occurs. The soil-water characteristic curve is stress dependent, as is the shear-strength gain as matric suction increases. In this paper, a three-dimensional, nonlinear regression analysis showed that a power-additive function is suitable to describe the variation of the shear strength of unsaturated soils with matric suction. The proposed function incorporates the effect of normal stress on the contribution of matric suction to the shear strength.Key words: air-entry value, matric suction, nonlinear regression, soil-water characteristic curve, tailings, unsaturated shear strength.


Sign in / Sign up

Export Citation Format

Share Document