scholarly journals Changes in Total Body Water (Tbw) During the First Week After Preterm Birth in Healthy Babies and Babies With Respiratory Distress Syndrome (Rds)

1997 ◽  
Vol 42 (3) ◽  
pp. 406-406
Author(s):  
Wing Tang ◽  
Deborah Ridout ◽  
Neena Modi
PEDIATRICS ◽  
1962 ◽  
Vol 29 (6) ◽  
pp. 883-889
Author(s):  
Wesley M. Clapp ◽  
L. Joseph Butterfield ◽  
Donough O'Brien

Normal values for both total body water and extracellular water have been determined in 86 premature infants aged 1 to 90 days and weighing 940 to 2,435 gm, with use of the techniques of deuterium oxide and bromide dilution. Nine full-term infants aged 1 to 6 days and weighing 2,590 to 4,985 gm were similarly studied. Nine infants with the respiratory distress syndrome and eight infants of toxemic mothers studied in the first 24 hours of life showed no significant difference in their body water compartments in comparison to a control group of normal infants matched for age and weight. Seven infants of diabetic mothers studied in the first 24 hours of life showed a significant decrease in total body water, expressed as percentage of body weight, with a normal intracellular to extracellular water ratio. These data indirectly support other evidence that there is an increase in body fat in these infants at birth. See Table in the PDF file


2007 ◽  
Vol 292 (6) ◽  
pp. L1345-L1351 ◽  
Author(s):  
Theresa R. Grover ◽  
Tiina M. Asikainen ◽  
John P. Kinsella ◽  
Steven H. Abman ◽  
Carl W. White

Respiratory distress syndrome (RDS) secondary to preterm birth and surfactant deficiency is characterized by severe hypoxemia, lung injury, and impaired production of nitric oxide (NO) and vascular endothelial growth factor (VEGF). Since hypoxia-inducible factors (HIFs) mediate the effects of both NO and VEGF in part through regulation by prolyl-hydroxylase-containing domains (PHDs) in the presence of oxygen, we hypothesized that HIF-1α and -2α in the lung are decreased following severe RDS in preterm neonatal lambs. To test this hypothesis, fetal lambs were delivered at preterm gestation (115-day gestation, term = 145 days; n = 4) and mechanically ventilated for 4 h. Lambs developed respiratory failure characterized by severe hypoxemia despite treatment with mechanical ventilation with high inspired oxygen concentrations. Lung samples were compared with nonventilated control animals at preterm (115-day gestation; n = 3) and term gestation (142-day gestation; n = 3). We found that HIF-1α protein expression decreased ( P < 0.05) and PHD-2 expression increased ( P < 0.005) at birth in normal term animals before air breathing. Compared with age-matched controls, HIF-1α protein and HIF-2α protein expression decreased by 80% and 55%, respectively ( P < 0.005 for each) in preterm lambs with RDS. Furthermore, VEGF mRNA was decreased by 40%, and PHD-2 protein expression doubled in RDS lambs. We conclude that pulmonary expression of HIF-1α, HIF-2α, and the downstream target of their regulation, VEGF mRNA, is impaired following RDS in neonatal lambs. We speculate that early disruption of HIF and VEGF expression after preterm birth and RDS may contribute to long-term abnormalities in lung growth, leading to bronchopulmonary dysplasia.


Sign in / Sign up

Export Citation Format

Share Document