scholarly journals Cigarette Smoke Extract Causes Non-Apoptotic Cell Death in Neonatal Vascular Smooth Muscle Cells

1999 ◽  
Vol 45 (4, Part 2 of 2) ◽  
pp. 294A-294A
Author(s):  
Namasivayam Ambalavanan ◽  
Waldemar F Carlo ◽  
Arlene Bulger ◽  
Jian Shi ◽  
Joseph B Philips
2020 ◽  
Vol 318 (3) ◽  
pp. H508-H518 ◽  
Author(s):  
Ariunaa Sampilvanjil ◽  
Tadayoshi Karasawa ◽  
Naoya Yamada ◽  
Takanori Komada ◽  
Tsunehito Higashi ◽  
...  

Cigarette smoking is a major risk factor for aortic aneurysm and dissection; however, no causative link between smoking and these aortic disorders has been proven. In the present study, we investigated the mechanism by which cigarette smoke affects vascular wall cells and found that cigarette smoke extract (CSE) induced a novel form of regulated cell death termed ferroptosis in vascular smooth muscle cells (VSMCs). CSE markedly induced cell death in A7r5 cells and primary rat VSMCs, but not in endothelial cells, which was completely inhibited by specific ferroptosis inhibitors [ferrostatin-1 (Fer-1) and Liproxstatin-1] and an iron chelator (deferoxamine). CSE-induced VSMC death was partially inhibited by a GSH precursor ( N-acetyl cysteine) and an NADPH oxidase inhibitor [diphenyleneiodonium chloride (DPI)], but not by inhibitors of pan-caspases (Z-VAD), caspase-1 (Z-YVAD), or necroptosis (necrostatin-1). CSE also upregulated IL-1β, IL-6, TNF-α, matrix metalloproteinase (MMP)-2, MMP-9, and TIMP-1 (tissue inhibitor of metalloproteinase)in A7r5 cells, which was inhibited by Fer-1. Furthermore, CSE induced the upregulation of Ptgs2 mRNA, lipid peroxidation, and intracellular GSH depletion, which are key features of ferroptosis. VSMC ferroptosis was induced by acrolein and methyl vinyl ketone, major constituents of CSE. Furthermore, CSE caused medial VSMC loss in ex vivo aortas. Electron microscopy analysis showed mitochondrial damage and fragmentation in medial VSMCs of CSE-treated aortas. All of these manifestations were partially restored by Fer-1. These findings demonstrate that ferroptosis is responsible for CSE-induced VSMC death and suggest that ferroptosis is a potential therapeutic target for preventing aortic aneurysm and dissection. NEW & NOTEWORTHY Cigarette smoke extract (CSE)-induced cell death in rat vascular smooth muscle cells (VSMCs) was completely inhibited by specific ferroptosis inhibitors and an iron chelator. CSE also induced the upregulation of Ptgs2 mRNA, lipid peroxidation, and intracellular GSH depletion, which are key features of ferroptosis. CSE caused medial VSMC loss in ex vivo aortas. These findings demonstrate that ferroptosis is responsible for CSE-induced VSMC death.


2018 ◽  
Vol 38 (Suppl_1) ◽  
Author(s):  
Sarah R Franco ◽  
Amelia Stranz ◽  
Fiona Ljumani ◽  
Go Urabe ◽  
Danielle Stewart ◽  
...  

2001 ◽  
Vol 170 (2) ◽  
pp. 130-136 ◽  
Author(s):  
Namasivayam Ambalavanan ◽  
Waldemar F. Carlo ◽  
Arlene Bulger ◽  
Jian Shi ◽  
Joseph B. Philips

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 800
Author(s):  
Anna Maria Posadino ◽  
Annalisa Cossu ◽  
Roberta Giordo ◽  
Amalia Piscopo ◽  
Wael M Abdel-Rahman ◽  
...  

This work aims to analyze the chemical and biological evaluation of two extracts obtained by olive mill wastewater (OMW), an olive oil processing byproduct. The exploitation of OMW is becoming an important aspect of development of the sustainable olive oil industry. Here we chemically and biologically evaluated one liquid (L) and one solid (S) extract obtained by liquid–liquid extraction followed by acidic hydrolysis (LLAC). Chemical characterization of the two extracts indicated that S has higher phenol content than L. Hydroxytyrosol and tyrosol were the more abundant phenols in both OMW extracts, with hydroxytyrosol significantly higher in S as compared to L. Both extracts failed to induce cell death when challenged with endothelial cells and vascular smooth muscle cells in cell viability experiments. On the contrary, the higher extract dosages employed significantly affected cell metabolic activity, as indicated by the MTT tests. Their ability to counteract H2O2-induced oxidative stress and cell death was assessed to investigate potential antioxidant activities of the extracts. Fluorescence measurements obtained with the reactive oxygen species (ROS) probe H2DCF-DA indicated strong antioxidant activity of the two OMW extracts in both cell models, as indicated by the inhibition of H2O2-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate LLAC-obtained OMW extracts as a safe and useful source of valuable compounds harboring antioxidant activity.


2008 ◽  
Vol 103 (5) ◽  
Author(s):  
Alexandra E. Ewence ◽  
Martin Bootman ◽  
H. Llewelyn Roderick ◽  
Jeremy N. Skepper ◽  
Geraldine McCarthy ◽  
...  

2001 ◽  
Vol 280 (3) ◽  
pp. C709-C718 ◽  
Author(s):  
Tzong-Shyuan Lee ◽  
Lee-Young Chau

Oxidized low-density lipoprotein (oxLDL) is a potent inducer of apoptosis for vascular cells. In the present study, we demonstrate that the expression of death mediators, including p53, Fas, and Fas ligand (FasL) was substantially upregulated by oxLDL in cultured vascular smooth muscle cells (SMCs). The induction of these death mediators was time dependent and was accompanied by an increase in apoptotic death of SMCs following oxLDL treatment. Two oxysterols, 7β-hydroxycholesterol and 25-hydroxycholesterol, were also effective to induce the expression of death mediators and apoptosis. α-Tocopherol and deferoxamine significantly attenuated the induction of death mediators and cell death induced by oxLDL and oxysterols, suggesting that reactive oxygen species are involved in triggering the apoptotic event. Incubation of cells with FasL-neutralizing antibody inhibited the oxLDL-induced cell death up to 50%. Furthermore, caspase 8 and caspase 3 activities were induced time dependently in SMCs following oxLDL treatment. Collectively, these data suggest that the Fas/FasL death pathway is activated and responsible for, at least in part, the apoptotic death in vascular SMCs upon exposure to oxLDL.


1998 ◽  
Vol 31 ◽  
pp. S351-S353 ◽  
Author(s):  
Takeshi Nakahashi ◽  
Keisuke Fukuo ◽  
Hiroyuki Nishimaki ◽  
Shigeki Hata ◽  
Masumi Shimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document