scholarly journals On the Thermal Ignition of Wood Waste

1998 ◽  
Vol 76 (3) ◽  
pp. 205-210 ◽  
Author(s):  
J.C. Jones ◽  
A. Puignou
Keyword(s):  
2004 ◽  
Vol 3 (3) ◽  
pp. 415-424
Author(s):  
Madalina Zanoaga ◽  
Yevgen Mamunya ◽  
Fulga Tanasa ◽  
Volodymyr Myshak ◽  
Raluca Darie ◽  
...  

2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


2020 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
José Guillermo Rosas ◽  
Natalia Gómez ◽  
Jorge Cara-Jiménez ◽  
Judith González-Arias ◽  
Miguel Ángel Olego ◽  
...  

This work addresses the joint management of residual microalgae and pine wood waste through pyrolysis to obtain a solid product for its use as soil amendment and two other by-products (liquid and gaseous) that can be used for energy purposes. Two management routes have been followed. The first route is through the co-pyrolysis of mixtures of both residual materials in several proportions and the later use of their solid fraction for soil amendment. The second route is the pyrolysis of pine wood waste and its direct combination with dried residual microalgae, also using it as soil amendment. The solid fraction assessment shows that from seven solid products (biochar) three stand out for their positive applicability in agriculture as soil amendment. In addition, they also present the benefit of serving as carbon sink, giving a negative balance of CO2 emissions. However, caution is suggested due to biochar applicability being subject to soil characteristics. To ensure the sustainability of the overall process, the energy available in liquid and gaseous fractions has been assessed for covering the drying needs of the residual microalgae in both cases. These results suggest that the pyrolysis process is a sustainable way to manage specific evaluated residues and their products.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Rama Subba Reddy Gorla

AbstractIn this study, the ignition characteristics and the flow properties of the mixed convection flow are presented. Detailed formulations of the forced, natural and mixed convection problems have been discussed. In order to avoid inconvenient switch between the forced and natural convection we introduce a continuous transformation in the mixed convection. We make a comparison between these situations which reveal a good agreement. For mixed convection flow, the ignition distance is explicitly expressed as a function of the Prandtl number, reaction parameter and wall temperature. It has been observed that owing to the increase of the aforesaid parameters, the thermal ignition distance is reduced. Numerical results are illustrated for velocity, temperature, and concentration for different physical parameters. Furthermore, the development of combustion is presented by using streamlines, isotherms and isolines of fuel and oxidizer.


2020 ◽  
Vol 1700 ◽  
pp. 012005
Author(s):  
Mujiyono ◽  
D Nurhadiyanto ◽  
H Pratiwi ◽  
GD Pratama ◽  
P Priyono ◽  
...  

1976 ◽  
Vol 98 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Choong Se Kim ◽  
Paul M. Chung

The governing equations of thermal ignition are analyzed for porous solid fuel, such as coal, of various two-dimensional and axisymmetric geometries by the Laplace asymptotic method. Mass diffusion of the gaseous oxidant through the porous fuel is included. The nonlinear partial differential equations of energy and mass balances in time-space coordinates containing the Arrhenius volumic chemical reaction terms are analyzed. By employing the Laplace asymptotic technique and by invoking a certain limit theorem, the governing equations are reduced to a first order ordinary differential equation governing the fuel surface temperature, which is readily solved numerically. Detailed discussion of the effects of the various governing parameters on ignition is presented. Because of the basically closed-form nature of the solutions obtained, many general and fundamental aspects of the ignition criteria hitherto unknown are found.


1992 ◽  
Vol 85 (1-6) ◽  
pp. 259-269
Author(s):  
FRED S. LARSEN ◽  
WILLIAM H. McCLENNEN ◽  
XIAO-XUE DENG ◽  
GEOFFREY D. SILCOX ◽  
KATHY ALLISON
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document