scholarly journals Chemometric Methods to Quantify 1D and 2D NMR Spectral Differences Among Similar Protein Therapeutics

2017 ◽  
Vol 19 (3) ◽  
pp. 1011-1019 ◽  
Author(s):  
Kang Chen ◽  
Junyong Park ◽  
Feng Li ◽  
Sharadrao M. Patil ◽  
David A. Keire
2020 ◽  
Vol 199 ◽  
pp. 103973 ◽  
Author(s):  
David A. Sheen ◽  
Vincent K. Shen ◽  
Robert G. Brinson ◽  
Luke W. Arbogast ◽  
John P. Marino ◽  
...  

1994 ◽  
Vol 91 ◽  
pp. 697-703 ◽  
Author(s):  
B Gillet ◽  
BT Doan ◽  
C Verre-Sebrie ◽  
O Fedeli ◽  
JC Beloeil ◽  
...  

1986 ◽  
Vol 55 (02) ◽  
pp. 268-270
Author(s):  
R J Alexander

SummaryAn attempt was made to isolate from plasma the platelet surface substrate for thrombin, glycoprotein V (GPV), because a GPV antigen was reported to be present in plasma (3). Plasma fractionation based on procedures for purification of GPV from platelets revealed a thrombin-sensitive protein with appropriate electrophoretic mobility. The protein was purified; an antiserum against it i) reacted with detergent-solubilized platelet proteins or secreted proteins in a double diffusion assay, ii) adsorbed a protein from the supernatant solution of activated platelets, and iii) inhibited thrombin-induced platelet activation, but the antiserum did not adsorb labeled GPV. The purified protein was immunochemically related to prothrombin rather than to GPV. Other antibodies against prothrombin were also able to adsorb a protein from platelets. It is concluded that 1) plasma does not contain appreciable amounts of GPV, and 2) platelets contain prothrombin or an immunochemically similar protein.


Author(s):  
Benjamin D. McPheron ◽  
Jeffrey L. Schiano ◽  
Brian F. Thomson ◽  
Kiran K. Shetty ◽  
William W. Brey

2013 ◽  
Vol 12 (10) ◽  
pp. 695-701
Author(s):  
Herve Martial Poumale Poumale ◽  
Alphonsine Nkapwa Guedem ◽  
Louis Pergaud Sandjo ◽  
Bonaventure Tchaleu Ngadjui ◽  
Yoshihito Shiono

A new lupane type triterpene (1), together with betulinic acid (2), friedelin (3), aristolochic acid I (4), alpinumisoflavone (5) and 4’-O-methylepinumisoflavone (6) have been isolated from the leaves of Thecacoris annobonea. The structure of the new compound was elucidated on the basis of 1 and 2D NMR experiments. The isolated compounds were evaluated for their phytotoxicity and antimicrobial activity. 1 exhibited significant antimicrobial activity at 30 μg/ml and compounds 1, 2, 3, 4, 5 and 6 inhibited root growth lettuce at 100 μg/ml. 


Sign in / Sign up

Export Citation Format

Share Document