Novel Drug Delivery Approach via Self-Microemulsifying Drug Delivery System for Enhancing Oral Bioavailability of Asenapine Maleate: Optimization, Characterization, Cell Uptake, and In Vivo Pharmacokinetic Studies

2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Mitali H. Patel ◽  
Veenu P. Mundada ◽  
Krutika K. Sawant
Planta Medica ◽  
2020 ◽  
Author(s):  
Patcharawalai Jaisamut ◽  
Subhaphorn Wanna ◽  
Surasak Limsuwan ◽  
Sasitorn Chusri ◽  
Kamonthip Wiwattanawongsa ◽  
...  

AbstractBoth quercetin and resveratrol are promising plant-derived compounds with various well-described biological activities; however, they are categorized as having low aqueous solubility and labile natural compounds. The purpose of the present study was to propose a drug delivery system to enhance the oral bioavailability of combined quercetin and resveratrol. The suitable self-microemulsifying formulation containing quercetin together with resveratrol comprised 100 mg Capryol 90, 700 mg Cremophor EL, 200 mg Labrasol, 20 mg quercetin, and 20 mg resveratrol, which gave a particle size of 16.91 ± 0.08 nm and was stable under both intermediate and accelerated storage conditions for 12 months. The percentages of release for quercetin and resveratrol in the self-microemulsifying formulation were 75.88 ± 1.44 and 86.32 ± 2.32%, respectively, at 30 min. In rats, an in vivo pharmacokinetics study revealed that the area under the curve of the self-microemulsifying formulation containing quercetin and resveratrol increased approximately ninefold for quercetin and threefold for resveratrol compared with the unformulated compounds. Moreover, the self-microemulsifying formulation containing quercetin and resveratrol slightly enhanced the in vitro antioxidant and cytotoxic effects on AGS, Caco-2, and HT-29 cells. These findings demonstrate that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetin and resveratrol without interfering with their biological activities. These results provide valuable information for more in-depth research into the utilization of combined quercetin and resveratrol.


Author(s):  
Vandana Gupta ◽  
Jaya Singh

Gastric emptying is a complicated process in the human body because it is very inconstant, resulting in ambiguous in vivo drug delivery system efficacy. To combat this variability, scientists have been working on developing a regulated medication delivery system with a long gastric residence period. This review article on gastroretentive drug delivery systems (GRDDS) focuses on numerous gastroretentive approaches that have recently emerged as a leading methodology in the field of site-specific orally administered controlled release drug administration. Gastroretentive medicines come in a variety of forms on the market, including tablets, granules, capsules, floating microspheres, laminated films, and powders. Floating microspheres are currently garnering more attention than previous techniques because of their benefits, which include more consistent drug absorption and a lower risk of local discomfort. The primary goal of this method is to increase gastric retention time in the GIT, which is defined as more than 12 hours in the stomach with an absorption window in the upper small intestine. Longer stomach retention improves bioavailability, reduces drug waste, and boosts solubility for medications that are less soluble in a high pH environment. The medicines are released into the stomach for a long time and consistently thanks to the floating microsphere systems. The current study compiles the most recent research on the techniques of production, characterization, and numerous aspects that impact the performance of floating microspheres for oral administration.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115952 ◽  
Author(s):  
Jaganmohan Somagoni ◽  
Cedar H. A. Boakye ◽  
Chandraiah Godugu ◽  
Apurva R. Patel ◽  
Henrique Antonio Mendonca Faria ◽  
...  

2013 ◽  
Vol 63 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Ramesh Jakki ◽  
Muzammil Afzal Syed ◽  
Prabhakar Kandadi ◽  
Kishan Veerabrahma

The main objective of this work was to prepare a self-micro emulsifying drug delivery system (SMEDDS) for enhancement of oral bioavailability of domperidone, a poorly water soluble drug. The solubility of the drug was determined in various vehicles. A pseudo ternary phase diagram was constructed to identify the self-micro emulsification region. The in vitro self-micro emulsification properties and droplet size analysis of SMEDDS were studied following their addition to water under mild agitation. Further, the resultant formulations were investigated for clarity, phase separation, globule size, effect of pH and dilutions (1:100, 1:500, 1:1000) and freeze-thaw stability. The optimized formulation, SMEDDS-B used for in vitro dissolution and bioavailability assessment, contained oil (Labrafac CC, 25 %, m/m), surfactant (Tween 80, 55 %, m/m), and co-surfactant (Transcutol®, 20 %, m/m). The preliminary oral bioavailability of domperidone from SMEDDS was 1.92-fold higher compared to that of domperidone suspension in rats. The AUC0-24 and cmax values were 3.38 ± 0.81 μg h mL-1 and 0.44 ± 0.03 μg mL-1 for SMEDDS-B formulation in comparison with 1.74 ± 0.18 μg h mL-1 and 0.24 ± 0.02 μg mL-1 for domperidone suspension, suggesting a significant increase (p < 0.05) in oral bioavailability of domperidone from SMEDDSS.


Sign in / Sign up

Export Citation Format

Share Document