scholarly journals Estrogen Induces Nitric Oxide Production via Activation of Constitutive Nitric Oxide Synthases in Human Neuroblastoma Cells

Endocrinology ◽  
2004 ◽  
Vol 145 (10) ◽  
pp. 4550-4557 ◽  
Author(s):  
Yun Xia ◽  
Teresa L. Krukoff

Abstract Although it is becoming increasingly evident that nitric oxide (NO) mediates some of estrogen’s actions in the brain, the effects of estrogen on NO production through NO synthases (NOS) in neuronal cells have not yet been identified. Here we assessed changes in NO production induced by 17β-estradiol (E2) in cells of neuronal origin using human SK-N-SH neuroblastoma cells, which we show express all three isoforms of NOS. Involvement of NOS isoforms in E2-induced NO production was examined using isoform-specific NOS inhibitors. E2 (10−10–10−6m) induced rapid increases in NO release and changes in endothelial NOS (eNOS) expression, which were blocked by ICI 182,780, an antagonist of estrogen receptors. Increased levels of NO release and NOS activity induced by E2 were blocked by N5-(1-Imino-3-butenyl)-l-ornithine, a neuronal NOS inhibitor, and N5-(1-Iminoethyl)-l-ornithine, an eNOS inhibitor, but not by 1400W, an inducible NOS inhibitor. These results demonstrate that E2-stimulated NO production occurs via estrogen receptor-mediated activation of the constitutive NOSs, neuronal NOS and eNOS. The E2-induced NO increase was abolished when extracellular Ca2+ was removed from the medium or after the addition of nifedipine, an L-type channel blocker, and was partially inhibited using 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester, an intracellular Ca2+ chelator. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester itself also caused an increase in NO release that was blocked by 1400W, suggesting that inducible NOS mediates this response. Together these data reveal that constitutive NOS activities are responsible for E2- induced NO production in neuroblastoma cells and that differential activation of NOS isoforms in these cells occurs in response to different treatments.

1999 ◽  
Vol 19 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Jeffrey M. Gidday ◽  
Aarti R. Shah ◽  
Raymond G. Maceren ◽  
Qiong Wang ◽  
Dale A. Pelligrino ◽  
...  

Neuroprotection against cerebral ischemia can be realized if the brain is preconditioned by previous exposure to a brief period of sublethal ischemia. The present study was undertaken to test the hypothesis that nitric oxide (NO) produced from the neuronal isoform of NO synthase (NOS) serves as a necessary signal for establishing an ischemia-tolerant state in brain. A newborn rat model of hypoxic preconditioning was used, wherein exposure to sublethal hypoxia (8% oxygen) for 3 hours renders postnatal day (PND) 6 animals completely resistant to a cerebral hypoxic-ischemic insult imposed 24 hours later. Postnatal day 6 animals were treated 0.5 hour before preconditioning hypoxia with the nonselective NOS inhibitor L-nitroarginine (2 mg/kg intraperitoneally). This treatment, which resulted in a 67 to 81% inhibition of calcium-dependent constitutive NOS activity 0.5 to 3.5 hours after its administration, completely blocked preconditioning-induced protection. However, administration of the neuronal NOS inhibitor 7-nitroindazole (40 mg/kg intraperitoneally) before preconditioning hypoxia, which decreased constitutive brain NOS activity by 58 to 81%, was without effect on preconditioning-induced cerebroprotection, as was pretreatment with the inducible NOS inhibitor aminoguanidine (400 mg/kg intraperitoneally). The protective effects of preconditioning were also not blocked by treating animals with competitive [3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate; 5 mg/kg intraperitoneally] or noncompetitive (MK-801; 1 mg/kg intraperitoneally) N-methyl-D-aspartate receptor antagonists prior to preconditioning hypoxia. These findings indicate that NO production and activity are critical to the induction of ischemic tolerance in this model. However, the results argue against the involvement of the neuronal NOS isoform, activated secondary to a hypoxia-induced stimulation of N-methyl-D-aspartate receptors, and against the involvement of the inducible NOS isoform, but rather suggest that NO produced by the endothelial NOS isoform is required to mediate this profound protective effect.


1998 ◽  
Vol 274 (3) ◽  
pp. C770-C779 ◽  
Author(s):  
Q. El-Dwairi ◽  
A. Comtois ◽  
Y. Guo ◽  
S. N. A. Hussain

The aims of this study were to assess the role of nitric oxide (NO) and the contribution of different NO synthase (NOS) isoforms in skeletal muscle contractile dysfunction in septic shock. Four groups of conscious rats were examined. Group 1 served as control; groups 2, 3, and 4 were injected with Escherichia coli endotoxin [lipopolysaccharide (LPS), 20 mg/kg ip] and killed after 6, 12, and 24 h, respectively. Protein expression was assessed by immunoblotting and immunostaining. LPS injection elicited a transient expression of the inducible NOS isoform, which peaked 12 h after LPS injection and disappeared within 24 h. This expression coincided with a significant increase in nitrotyrosine formation (peroxynitrite footprint). Muscle expression of the endothelial and neuronal NOS isoforms, by comparison, rose significantly and remained higher than control levels 24 h after LPS injection. In vitro measurement of muscle contractility 24 h after LPS injection showed that incubation with NOS inhibitor ( S-methyliosothiourea) restored the decline in submaximal force generation, whereas maximal muscle force remained unaffected. We conclude that NO plays a significant role in muscle contractile dysfunction in septic animals and that increased NO production is due to induction of the inducible NOS isoform and upregulation of constitutive NOS isoforms.


2001 ◽  
Vol 281 (5) ◽  
pp. G1264-G1270 ◽  
Author(s):  
Flavia Mulè ◽  
Maria Giuliana Vannucchi ◽  
Letizia Corsani ◽  
Rosa Serio ◽  
Maria Simonetta Faussone-Pellegrini

The aim of the present study was to evaluate whether alterations in the distribution and/or function of nitric oxide synthase (NOS) could be involved in the development of the spontaneous mechanical tone observed in colon from dystrophic ( mdx) mice. By recording the intraluminal pressure of isolated colon from normal mice, we showed that N ω-nitro- l-arginine methyl ester (l-NAME) increased the tone, even in the presence of tetrodotoxin. The effect was prevented by l-arginine, nifedipine, or Ca2+-free solution. In colon from mdx mice, l-NAME was ineffective. Immunohistochemistry revealed that the presence and distribution of neuronal (nNOS), endothelial, and inducible NOS isoforms in smooth muscle cells and neurons of colon from mdx mice were the same as in controls. However, the expression of myogenic nNOS was markedly reduced in mdx mice. We conclude that there is a myogenic NOS in mouse colon that can tonically produce nitric oxide to limit influx of Ca2+ through L-type voltage-dependent channels and modulate the mechanical tone. This mechanism appears to be defective in mdx mice.


2005 ◽  
Vol 103 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Pascal C. Chiari ◽  
Martin W. Bienengraeber ◽  
Dorothee Weihrauch ◽  
John G. Krolikowski ◽  
Judy R. Kersten ◽  
...  

Background Isoflurane produces delayed preconditioning in vivo. The authors tested the hypothesis that endothelial, inducible, or neuronal nitric oxide synthase (NOS) is a trigger or mediator of this protective effect. Methods In the absence or presence of exposure to isoflurane (1.0 minimum alveolar concentration) 24 h before experimentation, pentobarbital-anesthetized rabbits (n = 128) instrumented for hemodynamic measurement received 0.9% saline (control), the nonselective NOS inhibitor N-nitro-l-arginine methyl ester (10 mg/kg), one of two of the selective inducible NOS antagonists aminoguanidine (300 mg/kg) or 1400W (0.5 mg/kg), or the selective neuronal NOS inhibitor 7-nitroindazole (50 mg/kg) administered before exposure to isoflurane (trigger; day 1) or left anterior descending coronary artery occlusion (mediator; day 2). All rabbits underwent 30 min of coronary occlusion followed by 3 h of reperfusion. Tissue samples for reverse-transcription polymerase chain reaction and immunohistochemistry were also obtained in the presence or absence of N-nitro-l-arginine methyl ester with or without isoflurane pretreatment. Results Isoflurane significantly (P < 0.05) reduced infarct size (23 +/- 5% [mean +/- SD] of the left ventricular area at risk; triphenyltetrazolium chloride staining) as compared with control (42 +/- 7%). N-nitro-l-arginine methyl ester administered before isoflurane or coronary occlusion abolished protection (49 +/- 7 and 43 +/- 10%, respectively). Aminoguanidine, 1400W, and 7-nitroindazole did not alter infarct size or affect isoflurane-induced delayed preconditioning. Isoflurane increased endothelial but not inducible NOS messenger RNA transcription and protein translation immediately and 24 h after administration of the volatile agent. Pretreatment with N-nitro-l-arginine methyl ester attenuated isoflurane-induced increases in endothelial NOS expression. Conclusions The results suggest that endothelial NOS but not inducible or neuronal NOS is a trigger and mediator of delayed preconditioning by isoflurane in vivo.


2013 ◽  
Vol 93 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Yinli Ma ◽  
Xiaoping She ◽  
Shushen Yang

Ma, Y., She, X. and Yang, S. 2013. Cytosolic alkalization-mediated H 2 O 2 and NO production are involved in darkness-induced stomatal closure in Vicia faba. Can. J. Plant Sci. 93: 119–130. Darkness raised cytosolic pH, hydrogen peroxide (H2O2) and nitric oxide (NO) levels in guard cells while inducing Vicia faba stomatal closure. These darkness effects were prevented by weak acid butyric acid, H2O2 modulators ascorbic acid (ASA), catalase (CAT), diphenyleneiodonium (DPI) and NO modulators 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), NG-nitro-L-arg-methyl ester (L-NAME) respectively. The data suggest that cytosolic alkalization, H2O2 and NO all participate in darkness-induced stomatal closure. During darkness treatment, pH rise became noticeable at 10 min and peaked at 25 min, while H2O2 and NO production increased significantly at 20 min and reached their maximums at 40 min. The H2O2 and NO levels were increased by methylamine in light and decreased by butyric acid in darkness. The results show that cytosolic alkalization induces H2O2 and NO production. ASA, CAT and DPI suppressed NO production by methylamine, c-PTIO and L-NAME prevented H2O2 generation by methylamine. Calcium chelator 1,2-bis (2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM) and 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) restricted darkness-induced alkalization, H2O2 and NO production and stomatal closure. We suggest that cytosolic alkalization is necessary for H2O2 and NO production during darkness-induced stomatal closure. H2O2 mediates NO synthesis by alkalization, and vice versa. Calcium may act upstream of cytosolic alkalization, H2O2 and NO production, besides its known action downstream of H2O2 and NO.


1996 ◽  
Vol 271 (6) ◽  
pp. R1739-R1745 ◽  
Author(s):  
D. L. Xu ◽  
P. Y. Martin ◽  
J. St John ◽  
P. Tsai ◽  
S. N. Summer ◽  
...  

Pregnancy is characterized by hemodynamic and body fluid alterations. Increased nitric oxide (NO) production has been suggested to play a role in the hemodynamic alterations of pregnancy and has also been reported to increase arginine vasopressin (AVP) release. We therefore hypothesized that gestation could increase both NO synthase (NOS) constitutive isoforms, neuronal NOS and endothelial NOS, and thereby contribute to the hyposmolality and peripheral arterial vasodilation of pregnancy, respectively. The present study was therefore undertaken to examine the constitutive NOS isoforms in aortas, mesenteric arteries, and hypothalami of pregnant rats on day 20 of gestation compared with age-matched nonpregnant rats. Plasma AVP was determined by radioimmunoassay and hypothalamic mRNA AVP by solution hybridization assay. Hypothalamic neuronal NOS was assessed by Northern blot and Western blot; endothelial NOS was assessed by Western blot in arteries and hypothalamus. The results demonstrated that 1) plasma AVP and hypothalamic AVP mRNA are increased in pregnant rats (n = 8), 2) neuronal NOS protein and mRNA are increased in hypothalamus of pregnant rats (n = 4), and 3) endothelial NOS expression, as assessed by Western blot analysis, is increased in both conductance (aorta) as well as resistance (mesenteric) arteries of pregnant rats (n = 4). We conclude that both of the constitutive NOS isoforms are increased in pregnant rats, suggesting that the peripheral arterial vasodilation and hyposmolality of pregnancy could be mediated by these isoforms.


1996 ◽  
Vol 316 (1) ◽  
pp. 247-249 ◽  
Author(s):  
Elena GALEA ◽  
S. REGUNATHAN ◽  
Vassily ELIOPOULOS ◽  
Douglas L. FEINSTEIN ◽  
Donald J. REIS

Agmatine, decarboxylated arginine, is a metabolic product of mammalian cells. Considering the close structural similarity between L-arginine and agmatine, we investigated the interaction of agmatine and nitric oxide synthases (NOSs), which use L-arginine to generate nitric oxide (NO) and citrulline. Brain, macrophages and endothelial cells were respectively used as sources for NOS isoforms I, II and III. Enzyme activity was measured by the production of nitrites or L-citrulline. Agmatine was a competitive NOS inhibitor but not an NO precursor. Ki values were approx. 660 μM (NOS I), 220 μM (NOS II) and 7.5 mM (NOS III). Structurally related polyamines did not inhibit NOS activity. Agmatine, therefore, may be an endogenous regulator of NO production in mammals.


Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5600-5610 ◽  
Author(s):  
Jérome Lapointe ◽  
Monica Roy ◽  
Isabelle St-Pierre ◽  
Sarah Kimmins ◽  
Danny Gauvreau ◽  
...  

Nitric oxide (NO) is a free radical produced by the action of NO synthases (NOS) and is known to be involved in the regulation of many reproductive events that occur in the oviducts. The oviducts are highly specialized organs that play crucial roles in reproduction by providing an optimal environment for the final maturation of gametes, fertilization, and early embryo development. In this study, we analyzed the expression, hormonal regulation, and cellular distribution of neuronal, inducible, and endothelial NOS in different bovine oviduct segments to better understand the roles played by these enzymes in oviductal functions in vivo. Quantitative RT-PCR analysis revealed that NOS isoforms are hormonally regulated and differentially expressed along the oviduct throughout the estrous cycle. All NOS were highly expressed around the time of estrus, and immunohistochemistry studies determined that neuronal NOS, inducible NOS (iNOS), and endothelial NOS are differentially distributed in cells along the oviduct. Interestingly, our results showed that estradiol selectively up-regulates iNOS expression in the oviduct during the periovulatory period corresponding to the window of ovulation, oocyte transport, and fertilization. The resulting NO production by this high-output NOS may be of crucial importance for reproductive events that occur in the oviduct. This study provided the first demonstration that NO production is hormonally regulated in the mammalian oviducts in vivo. Our results suggest that neuronal NOS, iNOS, and endothelial NOS contribute to oviductal functions in a timely and site-specific manner.


1996 ◽  
Vol 270 (3) ◽  
pp. C794-C802 ◽  
Author(s):  
E. Noiri ◽  
T. Peresleni ◽  
N. Srivastava ◽  
P. Weber ◽  
W. F. Bahou ◽  
...  

The restitution of epithelial integrity is accomplished in part by cell migration. Studying this process, we have found that nitric oxide (NO) release migrating epithelial BSC-1 cells displayed a biphasic response to the inflicted wounds; an initial transient release of NO is followed by a delayed sustained elevation. Whereas the constitutive endothelial NO synthase (NOS) did not show any spatial or temporal changes associated with wounding, the inducible NOS became expressed 3 h after wounding and showed higher abundance at the edges of epithelial wounds. L-Arginine (L-Arg) or NO donor, S-nitroso-N-acetyl-DL-penicillamine, exerted motogenic effect in epithelial and endothelial cells. Inhibition of NOS with NG-nitro-L-arginine methyl ester (L-NAME) or a selective knockout of inducible NOS with antisense oligodeoxynucleotides reduced the rate of spontaneous or epidermal growth factor (EGF)-induced BSC-1 cell migration. Migrating cells showed the polarized expression of NOS, suggesting a head-to-rear NO gradient. Several growth factors (EGF, insulin-like growth factor I, hepatocyte growth factor, and fibroblast growth factor) were motogenic for BSC-1 cells, but this effect was abrogated by pretreatment with L-NAME. We conclude that endogenous NO production is a prerequisite for BSC-1 cell migration. A vectorial NO release may be essential for the spatially and temporally coordinated reciprocal phenomena that occur at the leading and trailing edge of locomoting epithelial cells. Although the exact mode of NO action remains uncertain, it is conceivable that the production of NO serves as a cellular switch from the stationary to the locomoting epithelial phenotype.


2001 ◽  
Vol 12 (10) ◽  
pp. 2088-2097
Author(s):  
JING SHAO ◽  
TOSHIO MIYATA ◽  
KOEI YAMADA ◽  
NORIO HANAFUSA ◽  
TAKEHIKO WADA ◽  
...  

Abstract. A new model of thrombotic microangiopathy (TMA) was previously developed, and it was demonstrated that endothelial nitric oxide (NO) synthase (NOS) is upregulated in glomeruli in this model. It was hypothesized that the synthesis of NO, a potent vasodilator and platelet inhibitory factor, is induced as a defense mechanism. The goal of this study was to clarify the role of NO in this model.Ex vivoexperiments using Western blotting and functional assays demonstrated upregulation of endothelial NOS in isolated glomeruli from TMA rats. Inin vivoexperiments, five groups of rats were studied, including rats with TMA treated with vehicle,NG-nitro-L-arginine methyl ester (L-NAME) (a NOS inhibitor), or L-N6-(1-iminoethyl)lysine (L-NIL) (a specific inducible NOS inhibitor) and normal control rats treated with vehicle or L-NAME. Blood urea nitrogen levels, BP, urinary nitrate/nitrite excretion, and proteinuria were measured. Histologic assessments using periodic acid-Schiff staining and immunohistologic studies with markers for endothelium, platelets, fibrin, cell proliferation, and apoptosis were also performed. L-NAME inhibition of NO synthesis in rats with TMA resulted in more severe glomerular and tubulointerstitial injury, which was accompanied by thrombus formation and a marked loss of endothelial cells, with more apoptotic cells. These changes were associated with severe renal function deterioration. In contrast, these features were less pronounced in the vehicle- or L-NIL-treated rats with TMA and were absent in the control animals. In conclusion, inhibition of NO production in this model of TMA markedly exacerbated renal injury. The absence of effects with L-NIL treatment suggests a minor role for inducible NOS in this model. These results suggest that production of NO, most likely by endothelial cells, is an important protective mechanism in TMA.


Sign in / Sign up

Export Citation Format

Share Document