scholarly journals Altered Glucose and Insulin Responses to Brain Medullary Thyrotropin-Releasing Hormone (TRH)-Induced Autonomic Activation in Type 2 Diabetic Goto-Kakizaki Rats

Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5425-5432 ◽  
Author(s):  
Yan Ao ◽  
Natalie Toy ◽  
Moon K. Song ◽  
Vay Liang W. Go ◽  
Hong Yang

Insulin secretion is impaired in type 2 diabetes (T2D). The insulin and glucose responses to central autonomic activation induced by excitation of brain medullary TRH receptors were studied in T2D Goto-Kakizaki (GK) rats. Blood glucose levels in normally fed, pentobarbital-anesthetized GK and nondiabetic Wistar rats were 193 and 119 mg/100 ml in males and 214 and 131 mg/100 ml in females. Intracisternal injection (ic) of the stable TRH analog RX 77368 (10 ng) induced significantly higher insulin response in both genders of overnight-fasted GK rats compared with Wistar rats and slightly increased blood glucose in female Wistar rats but significantly decreased it from 193 to 145 mg/100 ml in female GK rats. RX 77368 (50 ng) ic induced markedly greater glucose and relatively weaker insulin responses in male GK rats than Wistar rats. Bilateral vagotomy blocked ic RX 77368-induced insulin secretion, whereas adrenalectomy abolished its hyperglycemic effect. In adrenalectomized male GK but not Wistar rats, ic RX 77368 (50 ng) dramatically increased serum insulin levels by 6.5-fold and decreased blood glucose levels from 154 to 98 mg/100 ml; these changes were prevented by vagotomy. GK rats had higher basal pancreatic insulin II mRNA levels but a lower response to ic RX 77368 (50 ng) compared with Wistar rats. These results indicate that central-vagal activation-induced insulin secretion is susceptible in T2D GK rats. However, the dominant sympathetic-adrenal response to medullary TRH plays a suppressing role on vagal-mediated insulin secretion. This unbalanced vago-sympathetic activation by medullary TRH may contribute to the impaired insulin secretion in T2D.

Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 195-206 ◽  
Author(s):  
Hiroshi Tsuneki ◽  
Takashi Nagata ◽  
Mikio Fujita ◽  
Kanta Kon ◽  
Naizhen Wu ◽  
...  

Abstract Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems.


1970 ◽  
Vol 5 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Alexandre de Souza E Silva ◽  
Maria Paula Gonçalves Mota

O trabalho tem como objetivo analisar os estudos que avaliaram os efeitos dos programas de treinamento aeróbio, força e combinado nos níveis de glicose sanguínea em indivíduos com diabetes do tipo 2. Foi utilizado o método de revisão sistemática, sendo utilizada a base de dados PubMed. As palavras chaves utilizadas para pesquisa foram training and diabetes. Foram identificados 484 artigos originais. Apenas 17 estudos respeitaram os critérios de inclusão. Os resultados evidenciam que os programas de treinamento aeróbio diminuíram os níveis de glicose. O programa de treinamento de força também foi favorável à diminuição dos níveis de glicose sanguínea. Já o programa de treinamento combinado não demonstrou efeitos favoráveis no controle da glicose sanguínea. Conclui-se que o programa de treinamento aeróbio e de força ajudam a controlar os níveis de glicose sanguínea em indivíduos com diabetes do tipo 2. Palavras-chave: diabetes mellitus, treinamento, glicose.ABSTRACTThe study aims to analyze the studies that evaluated the effects of aerobic, strength and combined programs training in blood glucose levels in people with type 2 diabetes. We used a systematic review method and is used to PubMed database. The key words used for searching were training and diabetes. We identified 484 original articles. Only 17 studies complied with the inclusion criteria. The results show that aerobic training programs decreased glucose levels. The strength training program was also favorable to decrease in blood glucose levels. But the combined training program has not shown favorable effects on blood glucose control. We conclude that the aerobic training and strength helps control blood glucose levels in individuals with type 2 diabetes. Keywords: diabetes mellitus, training, glucose.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Musri Musman ◽  
Mauli Zakia ◽  
Ratu Fazlia Inda Rahmayani ◽  
Erlidawati Erlidawati ◽  
Safrida Safrida

Abstract Background Ethnobotany knowledge in a community has shaped local wisdom in utilizing plants to treat diseases, such as the use of Malaka (Phyllanthus emblica) flesh to treat type 2 diabetes. This study presented evidence that the phenolic extract of the Malaka flesh could reduce blood sugar levels in the diabetic induced rats. Methods The phenolic extract of the P. emblica was administrated to the glucose-induced rats of the Wistar strain Rattus norvegicus for 14 days of treatment where the Metformin was used as a positive control. The data generated were analyzed by the two-way ANOVA Software related to the blood glucose level and by SAS Software related to the histopathological studies at a significant 95% confidence. Results The phenolic extract with concentrations of 100 and 200 mg/kg body weight could reduce blood glucose levels in diabetic rats. The post hoc Dunnet test showed that the administration of the extract to the rats with a concentration of 100 mg/kg body weight demonstrated a very significant decrease in blood glucose levels and repaired damaged cells better than administering the extract at a concentration of 200 mg/kg weight body. Conclusion The evidence indicated that the phenolic extract of the Malaka flesh can be utilized as anti type 2 Diabetes mellitus without damaging other organs.


2020 ◽  
Author(s):  
Yifat Fundoiano-Hershcovitz ◽  
Abigail Hirsch ◽  
Sharon Dar ◽  
Eitan Feniger ◽  
Pavel Goldstein

BACKGROUND The use of remote data capture for monitoring blood glucose and supporting digital apps is becoming the norm in diabetes care. One common goal of such apps is to increase user awareness and engagement with their day-to-day health-related behaviors (digital engagement) in order to improve diabetes outcomes. However, we lack a deep understanding of the complicated association between digital engagement and diabetes outcomes. OBJECTIVE This study investigated the association between digital engagement (operationalized as tagging of behaviors alongside glucose measurements) and the monthly average blood glucose level in persons with type 2 diabetes during the first year of managing their diabetes with a digital chronic disease management platform. We hypothesize that during the first 6 months, blood glucose levels will drop faster and further in patients with increased digital engagement and that difference in outcomes will persist for the remainder of the year. Finally, we hypothesize that disaggregated between- and within-person variabilities in digital engagement will predict individual-level changes in blood glucose levels. METHODS This retrospective real-world analysis followed 998 people with type 2 diabetes who regularly tracked their blood glucose levels with the Dario digital therapeutics platform for chronic diseases. Subjects included “nontaggers” (users who rarely or never used app features to notice and track mealtime, food, exercise, mood, and location, n=585) and “taggers” (users who used these features, n=413) representing increased digital engagement. Within- and between-person variabilities in tagging behavior were disaggregated to reveal the association between tagging behavior and blood glucose levels. The associations between an individual’s tagging behavior in a given month and the monthly average blood glucose level in the following month were analyzed for quasicausal effects. A generalized mixed piecewise statistical framework was applied throughout. RESULTS Analysis revealed significant improvement in the monthly average blood glucose level during the first 6 months (<i>t</i>=−10.01, <i>P</i>&lt;.001), which was maintained during the following 6 months (<i>t</i>=−1.54, <i>P</i>=.12). Moreover, taggers demonstrated a significantly steeper improvement in the initial period relative to nontaggers (<i>t</i>=2.15, <i>P</i>=.03). Additional findings included a within-user quasicausal nonlinear link between tagging behavior and glucose control improvement with a 1-month lag. More specifically, increased tagging behavior in any given month resulted in a 43% improvement in glucose levels in the next month up to a person-specific average in tagging intensity (<i>t</i>=−11.02, <i>P</i>&lt;.001). Above that within-person mean level of digital engagement, glucose levels remained stable but did not show additional improvement with increased tagging (<i>t</i>=0.82, <i>P</i>=.41). When assessed alongside within-person effects, between-person changes in tagging behavior were not associated with changes in monthly average glucose levels (<i>t</i>=1.30, <i>P</i>=.20). CONCLUSIONS This study sheds light on the source of the association between user engagement with a diabetes tracking app and the clinical condition, highlighting the importance of within-person changes versus between-person differences. Our findings underscore the need for and provide a basis for a personalized approach to digital health.


2019 ◽  
Vol 6 (3) ◽  
pp. 786
Author(s):  
Eda Dayakar ◽  
C. Sathya Sree ◽  
E. Sanjay

Background: Diabetes mellitus is a common health problem globally. Dyslipidaemia is a major risk factor to develop cardiovascular disease in diabetics. They present study was undertaken to find out the prevalence of dyslipidaemia in type 2 diabetic patients.Methods: The present study was a cross sectional study consisting of 46 (23 male and 23 female) known type 2 diabetes mellitus patients. Age, gender, duration of diabetes, body mass index (BMI) was recorder in all the diabetic patients.  Fasting blood glucose levels, total cholesterol, triglycerides, HDL, LDL, VLDL levels were measured using standard methods and recorded.Results: The average total cholesterol, triglycerides, LDL, HDL and VLDL were 200±42mg/dl, 169.62±89.79mg/dl, 132.45±36.38mg/dl,39.1±16.6mg/dl and 35.85±17.09mg/dl respectively. The incidence of occurrence of hypercholesterolemia was 58.6% and hypertriglyceridemia 36.9%. Increased levels of LDL were observed in 30 (65.2%) patients and reduced HDL was observed in 43 (93.4%) patients. The incidence rate of dyslipidaemia was higher in female diabetic patients when compared to male diabetic patients.Conclusions: Awareness on the dyslipidaemia and its risk factors should be provided to the type 2 diabetic patients as they are more prone to get cardiovascular disease and lipid profile also should be monitored regularly along with blood glucose levels.


Sign in / Sign up

Export Citation Format

Share Document