scholarly journals Hypothalamic Leptin Signaling Regulates Hepatic Insulin Sensitivity via a Neurocircuit Involving the Vagus Nerve

Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4502-4511 ◽  
Author(s):  
Jonathan German ◽  
Francis Kim ◽  
Gary J. Schwartz ◽  
Peter J. Havel ◽  
Christopher J. Rhodes ◽  
...  

Abstract Recent evidence suggests that hormones such as insulin and leptin act in the hypothalamus to regulate energy balance and glucose metabolism. Here we show that in leptin receptor-deficient Koletsky (fak/fak) rats, adenovirally induced expression of leptin receptors in the area of the hypothalamic arcuate nucleus improved peripheral insulin sensitivity via enhanced suppression of hepatic glucose production, with no change of insulin-stimulated glucose uptake or disposal. This effect was associated with increased insulin signal transduction via phosphatidylinositol-3-OH kinase (as measured by pY-insulin receptor substrate-1 and pS-PKB/Akt) in liver, but not skeletal muscle, and with reduced hepatic expression of the gluconeogenic genes, glucose-6-phosphatase and phosphoenolpyruvate kinase. Moreover, the beneficial effects of hypothalamic leptin signaling on hepatic insulin sensitivity were blocked by selective hepatic vagotomy. We conclude that hypothalamic leptin action increases peripheral insulin sensitivity primarily via effects on the liver and that the mechanism underlying this effect is dependent on the hepatic branch of the vagus nerve.

Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2237-2246 ◽  
Author(s):  
Robby Zachariah Tom ◽  
Rasmus J. O. Sjögren ◽  
Elaine Vieira ◽  
Stephan Glund ◽  
Eduardo Iglesias-Gutiérrez ◽  
...  

Leptin regulates food intake and energy expenditure by activating the long form of the leptin receptor (LepRb). Leptin also regulates glucose homeostasis by improving whole-body insulin sensitivity, but the mechanism remains undefined. Leptin action is mediated by phosphorylation of several tyrosine residues on LepRb. LepRb-Tyr985 plays an important role in the attenuation of LepRb signaling. We determined the contribution of LepRb-Tyr985-mediated signals to leptin action on insulin sensitivity using LepRb-Tyr985 mutant mice (l/l mice). Glucose tolerance and whole-body insulin-mediated glucose utilization were determined in wild-type (+/+) and l/l mice. Glucose tolerance was unaltered between female +/+ and l/l mice but enhanced in the male l/l mice. Serum insulin concentration was decreased at baseline and 15 min after a glucose injection in female l/l vs. +/+ mice (P < 0.05) but unaltered in the male l/l mice. However, basal and insulin-stimulated glucose transport in isolated soleus and extensor digitorum longus muscle was similar between +/+ and l/l mice, indicating skeletal muscle insulin sensitivity in vitro was not enhanced. Moreover, euglycemic-hyperinsulinemic clamps reveal hepatic, rather than peripheral, insulin sensitivity is enhanced in female l/l mice, whereas male l/l mice display both improved hepatic and peripheral insulin sensitivity. In conclusion, signals emanating from leptin receptor Tyr985 control hepatic insulin sensitivity in both female and male l/l mice. Lack of LepRb-Tyr985 signaling enhances whole-body insulin sensitivity partly through increased insulin action on the suppression of hepatic glucose production.


2019 ◽  
Vol 316 (5) ◽  
pp. E782-E793 ◽  
Author(s):  
Kristen E. Syring ◽  
Travis J. Cyphert ◽  
Thomas C. Beck ◽  
Charles R. Flynn ◽  
Nicholas A. Mignemi ◽  
...  

Bile acids are involved in the emulsification and absorption of dietary fats, as well as acting as signaling molecules. Recently, bile acid signaling through farnesoid X receptor and G protein-coupled bile acid receptor (TGR5) has been reported to elicit changes in not only bile acid synthesis but also metabolic processes, including the alteration of gluconeogenic gene expression and energy expenditure. A role for bile acids in glucose metabolism is also supported by a correlation between changes in the metabolic state of patients (i.e., obesity or postbariatric surgery) and altered serum bile acid levels. However, despite evidence for a role for bile acids during metabolically challenging settings, the direct effect of elevated bile acids on insulin action in the absence of metabolic disease has yet to be investigated. The present study examines the impact of acutely elevated plasma bile acid levels on insulin sensitivity using hyperinsulinemic-euglycemic clamps. In wild-type mice, elevated bile acids impair hepatic insulin sensitivity by blunting the insulin suppression of hepatic glucose production. The impaired hepatic insulin sensitivity could not be attributed to TGR5 signaling, as TGR5 knockout mice exhibited a similar inhibition of insulin suppression of hepatic glucose production. Canonical insulin signaling pathways, such as hepatic PKB (or Akt) activation, were not perturbed in these animals. Interestingly, bile acid infusion directly into the portal vein did not result in an impairment in hepatic insulin sensitivity. Overall, the data indicate that acute increases in circulating bile acids in lean mice impair hepatic insulin sensitivity via an indirect mechanism.


Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Thomas H. Meek ◽  
Miles E. Matsen ◽  
Mauricio D. Dorfman ◽  
Stephan J. Guyenet ◽  
Vincent Damian ◽  
...  

In rodent models of type 1 diabetes, leptin administration into brain ventricles normalizes blood glucose at doses that have no effect when given peripherally. The ventromedial nucleus of the hypothalamus (VMN) is a potential target for leptin's antidiabetic effects because leptin-sensitive neurons in this brain area are implicated in glucose homeostasis. To test this hypothesis, we injected leptin directly into the bilateral VMN of rats with streptozotocin-induced uncontrolled diabetes mellitus. This intervention completely normalized both hyperglycemia and the elevated rates of hepatic glucose production and plasma glucagon levels but had no effect on tissue glucose uptake in the skeletal muscle or brown adipose tissue as measured using tracer dilution techniques during a basal clamp. To determine whether VMN leptin signaling is required for leptin-mediated normalization of diabetic hyperglycemia, we studied mice in which the leptin receptor gene was deleted in VMN steroidogenic factor 1 neurons using cre-loxP technology. Our findings indicate leptin action within these neurons is not required for the correction of diabetic hyperglycemia by central leptin infusion. We conclude that leptin signaling in the VMN is sufficient to mediate leptin's antidiabetic action but may not be necessary for this effect. Leptin action within a distributed neuronal network may mediate its effects on glucose homeostasis.


Endocrinology ◽  
2016 ◽  
Vol 157 (12) ◽  
pp. 4842-4852 ◽  
Author(s):  
Lin Li ◽  
C. Barbier de La Serre ◽  
Ni Zhang ◽  
Liang Yang ◽  
Hong Li ◽  
...  

Recent evidence has shown that alterations in dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) signaling influence glucose homeostasis, but the mechanism through which DMH NPY acts to affect glucose homeostasis remains unclear. Here we report that DMH NPY descending signals to the dorsal motor nucleus of the vagus (DMV) modulate hepatic insulin sensitivity to control hepatic glucose production in rats. Using the hyperinsulinemic-euglycemic clamp, we revealed that knockdown of NPY in the DMH by adeno-associated virus-mediated NPY-specific RNAi promoted insulin’s action on suppression of hepatic glucose production. This knockdown silenced DMH NPY descending signals to the DMV, leading to an elevation of hepatic vagal innervation. Hepatic vagotomy abolished the inhibitory effect of DMH NPY knockdown on hepatic glucose production, but this glycemic effect was not affected by vagal deafferentation. Together, these results demonstrate a distinct role for DMH NPY in the regulation of glucose homeostasis through the hepatic vagal efferents and insulin action on hepatic glucose production.


2009 ◽  
Vol 94 (9) ◽  
pp. 3616-3616
Author(s):  
Jonathan German ◽  
Francis Kim ◽  
Gary J. Schwartz ◽  
Peter J. Havel ◽  
Christopher J. Rhodes ◽  
...  

1989 ◽  
Vol 256 (5) ◽  
pp. E676-E681 ◽  
Author(s):  
N. L. Bodkin ◽  
B. L. Metzger ◽  
B. C. Hansen

The purpose of this study was to identify the relationship between basal hepatic glucose production (HGP) and peripheral insulin sensitivity as assessed by the hyperinsulinemic euglycemic clamp prior to and during the development of non-insulin-dependent (type 2) diabetes mellitus in rhesus monkeys. Twenty-six male monkeys (Macaca mulatta), including normal animals and monkeys in various phases of the development of spontaneous obesity-associated type 2 diabetes were studied. Fasting plasma glucose (FPG) and insulin (FIRI), basal HGP using a [3H]glucose infusion, and peripheral insulin sensitivity (as determined by the euglycemic clamp technique) were examined. The earliest change that could be detected was a significant reduction in peripheral insulin sensitivity accompanied by increased FIRI. These changes preceded a significant deterioration of glucose tolerance. Basal HGP changed in parallel with FPG (r = 0.90, P less than 0.001), becoming significantly elevated only when FPG rose to levels diagnostic of diabetes (greater than 140 mg/dl). Thus basal HGP and fasting glucose levels showed no significant changes early in the development of type 2 diabetes. We conclude that the early serial decreases in insulin sensitivity and progressive increases in FIRI, with or without decreased glucose tolerance, are prognostic of the future development of diabetes in obese monkeys, a longitudinal process that is also likely to be observed in most if not all obese humans progressing to diabetes.


2016 ◽  
Vol 311 (3) ◽  
pp. E620-E627 ◽  
Author(s):  
Tianru Jin ◽  
Jianping Weng

GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed “degradation” products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed “degradation” products of GLP-1 in the liver and elsewhere, including GLP-128–36 and GLP-132–36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.


1993 ◽  
Vol 264 (3) ◽  
pp. E380-E390 ◽  
Author(s):  
M. J. Borel ◽  
J. L. Beard ◽  
P. A. Farrell

We performed euglycemic hyperinsulinemic glucose clamps at insulin infusion rates of 1.9, 4.0, 9.3, and 19.3 mU.kg-1 x min-1 in rats with varying severities of iron deficiency anemia (IDA; mean hemoglobin concentrations of 59, 79, 107, and 137 g/l) to assess the effect of IDA on insulin sensitivity and responsiveness. Glucose appearance and disappearance (Rd) rates were determined using a primed continuous infusion of [3-3H]glucose. Basal plasma glucose and insulin concentrations were similar between the IDA and control rats. Basal hepatic glucose production was significantly (P = 0.0001) elevated in the two most anemic groups (13.6 +/- 2.4 and 12.6 +/- 3.1 vs. 10.6 +/- 2.2 and 10.2 +/- 2.0 mg.kg-1 x min-1). A significant upward shift in the insulin dose-response curves for Rd indicated an increase in peripheral insulin responsiveness in the two most anemic groups while a slight leftward shift was suggestive of an increase in insulin sensitivity in all three anemic groups. Hepatic insulin sensitivity and responsiveness were unaffected by IDA. We conclude that increased glucose utilization rates in IDA rats are due primarily to an increase in peripheral insulin responsiveness.


2014 ◽  
Vol 307 (10) ◽  
pp. E928-E934 ◽  
Author(s):  
Jose Cordoba-Chacon ◽  
Manuel D. Gahete ◽  
Owen P. McGuinness ◽  
Rhonda D. Kineman

A reciprocal relationship between insulin sensitivity and glucose tolerance has been reported in some mouse models and humans with isolated changes in growth hormone (GH) production and signaling. To determine if this could be explained in part by tissue-specific changes in insulin sensitivity, hyperinsulinemic-euglycemic clamps were performed in mice with adult-onset, isolated GH deficiency and in mice with elevated endogenous GH levels due to somatotrope-specific loss of IGF-I and insulin receptors. Our results demonstrate that circulating GH levels are negatively correlated with insulin-mediated glucose uptake in muscle but positively correlated with insulin-mediated suppression of hepatic glucose production. A positive relationship was also observed between GH levels and endpoints of hepatic lipid metabolism known to be regulated by insulin. These results suggest hepatic insulin resistance could represent an early metabolic defect in GH deficiency.


Sign in / Sign up

Export Citation Format

Share Document