scholarly journals Testosterone Protects Against Glucotoxicity-Induced Apoptosis of Pancreatic β-Cells (INS-1) and Male Mouse Pancreatic Islets

Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4058-4067 ◽  
Author(s):  
Wanthanee Hanchang ◽  
Namoiy Semprasert ◽  
Thawornchai Limjindaporn ◽  
Pa-thai Yenchitsomanus ◽  
Suwattanee Kooptiwut

Male hypogonadism associates with type 2 diabetes, and T can protect pancreatic β-cells from glucotoxicity. However, the protective mechanism is still unclear. This study thus aims to examine the antiapoptotic mechanism of T in pancreatic β cells cultured in high-glucose medium. T (0.0005–2 μg/mL) was added to INS-1 cells cultured in basal glucose or high-glucose media. Then cellular apoptosis, oxidative stress, and cell viability were measured. Endoplasmic reticulum (ER) stress markers and sensors and the antiapoptotic protein (B-cell lymphoma 2) were investigated by real-time PCR and Western blot analysis. ER stress markers were also measured in male mouse pancreatic islet cultured in similar conditions. T (0.05 and 0.5 μg/mL) did not have any effect on apoptosis and viability of INS-1 cells cultured in basal glucose medium, but it could reduce apoptosis and increase viability of INS-1 cells cultured in high-glucose medium. The protective effect of T is diminished by androgen receptor inhibitor. T (0.05 μg/mL) could significantly reduce nitrotyrosine levels, mRNA, and protein levels of the ER stress markers and sensor those that were induced when INS-1 cells were cultured in high-glucose medium. It could also significantly increase the survival proteins, sarco/endoplasmic reticulum Ca2+ ATPase-2, and B-cell lymphoma 2 in INS-1 cells cultured in the same conditions. Similarly, it could reduce ER stress markers and increase sarco/endoplasmic reticulum Ca2+ ATPase protein levels in male mouse pancreatic islets cultured in high-glucose medium. T can protect against male pancreatic β-cell apoptosis from glucotoxicity via the reduction of both oxidative stress and ER stress.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoming Zhang ◽  
Linhao Xu ◽  
Daqiang He ◽  
Shucai Ling

Poor management of DM causes cognitive impairment while the mechanism is still unconfirmed. The aim of the present study was to investigate the activation of C/EBP Homology Protein (CHOP), the prominent mediator of the endoplasmic reticulum (ER) stress-induced apoptosis under hyperglycemia. We employed streptozotocin- (STZ-) induced diabetic rats to explore the ability of learning and memory by the Morris water maze test. The ultrastructure of hippocampus in diabetic rats and cultured neurons in high glucose medium were observed by transmission electron microscopy and scanning electron microscopy. TUNEL staining was also performed to assess apoptotic cells while the expression of CHOP was assayed by immunohistochemistry and Western blot assay in these hippocampal neurons. Six weeks after diabetes induction, the escape latency increased and the average frequency in finding the platform decreased in diabetic rats (P<0.05). The morphology of neuron and synaptic structure was impaired; the number of TUNEL-positive cells and the expression of CHOP in hippocampus of diabetic rats and high glucose medium cultured neurons were markedly altered (P<0.05). The present results suggested that the CHOP-dependent endoplasmic reticulum (ER) stress-mediated apoptosis may be involved in hyperglycemia-induced hippocampal synapses and neurons impairment and promote the diabetic cognitive impairment.


2016 ◽  
Vol 420 (1-2) ◽  
pp. 95-106 ◽  
Author(s):  
Hao-Hao Zhang ◽  
Xiao-Jun Ma ◽  
Li-Na Wu ◽  
Yan-Yan Zhao ◽  
Peng-Yu Zhang ◽  
...  

2008 ◽  
Vol 14 (4) ◽  
pp. 293-297 ◽  
Author(s):  
Ling Qu ◽  
Xiao-chun Liang ◽  
Hong Zhang ◽  
Qun-li Wu ◽  
Lian-qing Sun ◽  
...  

2015 ◽  
Vol 290 (34) ◽  
pp. 20687-20699 ◽  
Author(s):  
Cong Yu ◽  
Shang Cui ◽  
Chen Zong ◽  
Weina Gao ◽  
Tongfu Xu ◽  
...  

The role of NR4A1 in apoptosis is controversial. Pancreatic β-cells often face endoplasmic reticulum (ER) stress under adverse conditions such as high free fatty acid (FFA) concentrations and sustained hyperglycemia. Severe ER stress results in β-cell apoptosis. The aim of this study was to analyze the role of NR4A1 in ER stress-mediated β-cell apoptosis and to characterize the related mechanisms. We confirmed that upon treatment with the ER stress inducers thapsigargin (TG) or palmitic acid (PA), the mRNA and protein levels of NR4A1 rapidly increased in both MIN6 cells and mouse islets. NR4A1 overexpression in MIN6 cells conferred resistance to cell loss induced by TG or PA, as assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and TUNEL assays indicated that NR4A1 overexpression also protected against ER stress-induced apoptosis. This conclusion was further confirmed by experiments exploiting siRNA to knockdown NR4A1 expression in MIN6 cells or exploiting NR4A1 knock-out mice. NR4A1 overexpression in MIN6 cells reduced C/EBP homologous protein (CHOP) expression and Caspase3 activation induced by TG or PA. NR4A1 overexpression in MIN6 cells or mouse islets resulted in Survivin up-regulation. A critical regulatory element was identified in Survivin promoter (−1872 bp to −1866 bp) with a putative NR4A1 binding site; ChIP assays demonstrated that NR4A1 physically associates with the Survivin promoter. In conclusion, NR4A1 protects pancreatic β-cells against ER stress-mediated apoptosis by up-regulating Survivin expression and down-regulating CHOP expression, which we termed as “positive and negative regulation.”


2021 ◽  
Vol 12 ◽  
Author(s):  
Jarin T. Snyder ◽  
Christine Darko ◽  
Rohit B. Sharma ◽  
Laura C. Alonso

Aging is associated with loss of proliferation of the insulin-secreting β-cell, a possible contributing factor to the increased prevalence of type 2 diabetes in the elderly. Our group previously discovered that moderate endoplasmic reticulum (ER) stress occurring during glucose exposure increases the adaptive β-cell proliferation response. Specifically, the ATF6α arm of the tripartite Unfolded Protein Response (UPR) promotes β-cell replication in glucose excess conditions. We hypothesized that β-cells from older mice have reduced proliferation due to aberrant UPR signaling or an impaired proliferative response to ER stress or ATF6α activation. To investigate, young and old mouse islet cells were exposed to high glucose with low-dose thapsigargin or activation of overexpressed ATF6α, and β-cell proliferation was quantified by BrdU incorporation. UPR pathway activation was compared by qPCR of target genes and semi-quantitative Xbp1 splicing assay. Intriguingly, although old β-cells had reduced proliferation in high glucose compared to young β-cells, UPR activation and induction of proliferation in response to low-dose thapsigargin or ATF6α activation in high glucose were largely similar between young and old. These results suggest that loss of UPR-led adaptive proliferation does not explain the reduced cell cycle entry in old β-cells, and raise the exciting possibility that future therapies that engage adaptive UPR could increase β-cell number through proliferation even in older individuals.


Author(s):  
Li Wu ◽  
Yuncheng Lv ◽  
Ying Lv ◽  
Sunmin Xiang ◽  
Zhibo Zhao ◽  
...  

Abstract Excessive accumulation of cholesterol in β cells initiates endoplasmic reticulum (ER) stress and associated apoptosis. We have reported that excessive uptake of cholesterol by MIN6 cells decreases the expression of secretagogin (SCGN) and then attenuates insulin secretion. Here, we aimed to determine whether cholesterol-induced SCGN decrease is involved in the modulation of ER stress and apoptosis in pancreatic β cells. In this study, MIN6 cells were treated with oxidized low-density lipoprotein (ox-LDL) for 24 h, and then intracellular lipid droplets and cell apoptosis were quantified, and SCGN and ER stress markers were identified by western blot analysis. Furthermore, small interfer RNA (siRNA)-mediated SCGN knockdown and recombinant plasmid-mediated SCGN restoration experiments were performed to confirm the role of SCGN in ER stress and associated cell apoptosis. Finally, the interaction of SCGN with ATF4 was computationally predicted and then validated by a co-immunoprecipitation assay. We found that ox-LDL treatment increased the levels of ER stress markers, such as phosphorylated protein kinase-like endoplasmic reticulum kinase, phosphorylated eukaryotic initiation factor 2 alpha, activating transcription factor 4 (ATF4), and transcription factor CCAAT-enhancer-binding protein homologous protein, and promoted MIN6 cell apoptosis; in addition, the expression of SCGN was downregulated. siRNA-mediated SCGN knockdown exacerbated β-cell ER stress by increasing ATF4 expression. Pretreatment of MIN6 cells with the recombinant SCGN partly antagonized ox-LDL-induced ER stress and apoptosis. Furthermore, a co-immunoprecipitation assay revealed an interaction between SCGN and ATF4 in MIN6 cells. Taken together, these results demonstrated that pancreatic β-cell apoptosis induced by ox-LDL treatment can be attributed, in part, to an SCGN/ATF4-dependent ER stress response.


2007 ◽  
Vol 193 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Shin Tsunekawa ◽  
Naoki Yamamoto ◽  
Katsura Tsukamoto ◽  
Yuji Itoh ◽  
Yukiko Kaneko ◽  
...  

The aim of this study was to investigate the in vivo and in vitro effects of exendin-4, a potent glucagon-like peptide 1 agonist, on the protection of the pancreatic β-cells against their cell death. In in vivo experiments, we used β-cell-specific calmodulin-overexpressing mice where massive apoptosis takes place in their β-cells, and we examined the effects of chronic treatment with exendin-4. Chronic and s.c. administration of exendin-4 reduced hyperglycemia. The treatment caused significant increases of the insulin contents of the pancreas and islets, and retained the insulin-positive area. Dispersed transgenic islet cells lived only shortly, and several endoplasmic reticulum (ER) stress-related molecules such as immunoglobulin-binding protein (Bip), inositol-requiring enzyme-1α, X-box-binding protein-1 (XBP-1), RNA-activated protein kinase-like endoplasmic reticulum kinase, activating transcription factor-4, and C/EBP-homologous protein (CHOP) were more expressed in the transgenic islets. We also found that the spliced form of XBP-1, a marker of ER stress, was also increased in β-cell-specific calmodulin-overexpressing transgenic islets. In the quantitative real-time PCR analyses, the expression levels of Bip and CHOP were reduced in the islets from the transgenic mice treated with exendin-4. These findings suggest that excess of ER stress occurs in the transgenic β-cells, and the suppression of ER stress and resultant protection against cell death may be involved in the anti-diabetic effects of exendin-4.


Endocrinology ◽  
2015 ◽  
Vol 156 (4) ◽  
pp. 1242-1250 ◽  
Author(s):  
Chisayo Kozuka ◽  
Sumito Sunagawa ◽  
Rei Ueda ◽  
Moritake Higa ◽  
Hideaki Tanaka ◽  
...  

Abstract Endoplasmic reticulum (ER) stress is profoundly involved in dysfunction of β-cells under high-fat diet and hyperglycemia. Our recent study in mice showed that γ-oryzanol, a unique component of brown rice, acts as a chemical chaperone in the hypothalamus and improves feeding behavior and diet-induced dysmetabolism. However, the entire mechanism whereby γ-oryzanol improves glucose metabolism throughout the body still remains unclear. In this context, we tested whether γ-oryzanol reduces ER stress and improves function and survival of pancreatic β-cells using murine β-cell line MIN6. In MIN6 cells with augmented ER stress by tunicamycin, γ-oryzanol decreased exaggerated expression of ER stress-related genes and phosphorylation of eukaryotic initiation factor-2α, resulting in restoration of glucose-stimulated insulin secretion and prevention of apoptosis. In islets from high-fat diet-fed diabetic mice, oral administration of γ-oryzanol improved glucose-stimulated insulin secretion on following reduction of exaggerated ER stress and apoptosis. Furthermore, we examined the impact of γ-oryzanol on low-dose streptozotocin-induced diabetic mice, where exaggerated ER stress and resultant apoptosis in β-cells were observed. Also in this model, γ-oryzanol attenuated mRNA level of genes involved in ER stress and apoptotic signaling in islets, leading to amelioration of glucose dysmetabolism. Taken together, our findings demonstrate that γ-oryzanol directly ameliorates ER stress-induced β-cell dysfunction and subsequent apoptosis, highlighting usefulness of γ-oryzanol for the treatment of diabetes mellitus.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Zhechu Peng ◽  
Richa Aggarwal ◽  
Ni Zeng ◽  
Lina He ◽  
Eileen X. Stiles ◽  
...  

ABSTRACT Isoforms of protein kinase B (also known as AKT) play important roles in mediating insulin and growth factor signals. Previous studies have suggested that the AKT2 isoform is critical for insulin-regulated glucose metabolism, while the role of the AKT1 isoform remains less clear. This study focuses on the effects of AKT1 on the adaptive response of pancreatic β cells. Using a mouse model with inducible β-cell-specific deletion of the Akt1 gene (βA1KO mice), we showed that AKT1 is involved in high-fat-diet (HFD)-induced growth and survival of β cells but is unnecessary for them to maintain a population in the absence of metabolic stress. When unchallenged, βA1KO mice presented the same metabolic profile and β-cell phenotype as the control mice with an intact Akt1 gene. When metabolic stress was induced by HFD, β cells in control mice with intact Akt1 proliferated as a compensatory mechanism for metabolic overload. Similar effects were not observed in βA1KO mice. We further demonstrated that AKT1 protein deficiency caused endoplasmic reticulum (ER) stress and potentiated β cells to undergo apoptosis. Our results revealed that AKT1 protein loss led to the induction of eukaryotic initiation factor 2 α subunit (eIF2α) signaling and ER stress markers under normal-chow-fed conditions, indicating chronic low-level ER stress. Together, these data established a role for AKT1 as a growth and survival factor for adaptive β-cell response and suggest that ER stress induction is responsible for this effect of AKT1.


Sign in / Sign up

Export Citation Format

Share Document