scholarly journals Perioperative Infusion of Glucagon-Like Peptide-1 Prevents Insulin Resistance After Surgical Trauma in Female Pigs

Endocrinology ◽  
2019 ◽  
Vol 160 (12) ◽  
pp. 2892-2902
Author(s):  
Martin Hagve ◽  
Petter F Gjessing ◽  
Mikal J Hole ◽  
Kirsten M Jansen ◽  
Ole Martin Fuskevåg ◽  
...  

Abstract Insulin resistance is an independent negative predictor of outcome after elective surgery and increases mortality among surgical patients in intensive care. The incretin hormone glucagon-like peptide-1 (GLP-1) potentiates glucose-induced insulin release from the pancreas but may also increase insulin sensitivity in skeletal muscle and directly suppress hepatic glucose release. Here, we investigated whether a perioperative infusion of GLP-1 could counteract the development of insulin resistance after surgery. Pigs were randomly assigned to three groups; surgery/control, surgery/GLP-1, and sham/GLP-1. Both surgery groups underwent major abdominal surgery. Whole-body glucose disposal (WGD) and endogenous glucose release (EGR) were assessed preoperatively and postoperatively using D-[6,6-2H2]-glucose infusion in combination with hyperinsulinemic euglycemic step-clamping. In the surgery/control group, peripheral insulin sensitivity (i.e., WGD) was reduced by 44% relative to preoperative conditions, whereas the corresponding decline was only 9% for surgery/GLP-1 (P < 0.05). Hepatic insulin sensitivity (i.e., EGR) remained unchanged in the surgery/control group but was enhanced after GLP-1 infusion in both surgery and sham animals (40% and 104%, respectively, both P < 0.05). Intraoperative plasma glucose increased in surgery/control (∼20%) but remained unchanged in both groups receiving GLP-1 (P < 0.05). GLP-1 diminished an increase in postoperative glucagon levels but did not affect skeletal muscle glycogen or insulin signaling proteins after surgery. We show that GLP-1 improves intraoperative glycemic control, diminishes peripheral insulin resistance after surgery, and suppresses EGR. This study supports the use of GLP-1 to prevent development of postoperative insulin resistance.

2020 ◽  
Author(s):  
Feifan Guo ◽  
Yuguo Niu ◽  
Haizhou Jiang ◽  
Hanrui Yin ◽  
Fenfen Wang ◽  
...  

Abstract The current study aimed to investigate the role of endoplasmic reticulum aminopeptidase 1 (ERAP1), a novel hepatokine, in whole-body glucose metabolism. Here, we found that hepatic ERAP1 levels were increased in insulin-resistant leptin-receptor-mutated (db/db) and high-fat diet (HFD)-fed mice. Consistently, hepatic ERAP1 overexpression attenuated skeletal muscle (SM) insulin sensitivity, whereas knockdown ameliorated SM insulin resistance. Furthermore, serum and hepatic ERAP1 levels were positively correlated, and recombinant mouse ERAP1 or conditioned medium with high ERAP1 content (CM-ERAP1) attenuated insulin signaling in C2C12 myotubes, and CM-ERAP1 or HFD-induced insulin resistance was blocked by ERAP1 neutralizing antibodies. Mechanistically, ERAP1 reduced ADRB2 expression and interrupted ADRB2-dependent signaling in C2C12 myotubes. Finally, ERAP1 inhibition via global knockout or the inhibitor thimerosal improved insulin sensitivity. Together, ERAP1 is a hepatokine that impairs SM and whole-body insulin sensitivity, and its inhibition might provide a therapeutic strategy for diabetes, particularly for those with SM insulin resistance.


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2003 ◽  
Vol 284 (5) ◽  
pp. E1027-E1036 ◽  
Author(s):  
Makoto Nishizawa ◽  
Mary Courtney Moore ◽  
Masakazu Shiota ◽  
Stephanie M. Gustavson ◽  
Wanda L. Snead ◽  
...  

Arteriovenous difference and tracer ([3-3H]glucose) techniques were used in 42-h-fasted conscious dogs to identify any insulin-like effects of intraportally administered glucagon-like peptide 1-(7–36)amide (GLP-1). Each study consisted of an equilibration, a basal, and three 90-min test periods (P1, P2, and P3) during which somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and peripheral glucose were infused. Saline was infused intraportally in P1. During P2 and P3, GLP-1 was infused intraportally at 0.9 and 5.1 pmol · kg−1 · min−1in eight dogs, at 10 and 20 pmol · kg−1 · min−1in seven dogs, and at 0 pmol · kg−1 · min−1in eight dogs (control group). Net hepatic glucose uptake was significantly enhanced during GLP-1 infusion at 20 pmol · kg−1 · min−1[21.8 vs. 13.4 μmol · kg−1 · min−1(control), P < 0.05]. Glucose utilization was significantly increased during infusion at 10 and 20 pmol · kg−1 · min−1[87.3 ± 8.3 and 105.3 ± 12.8, respectively, vs. 62.2 ± 5.3 and 74.7 ± 7.4 μmol · kg−1 · min−1(control), P < 0.05]. The glucose infusion rate required to maintain hyperglycemia was increased ( P < 0.05) during infusion of GLP-1 at 5.1, 10, and 20 pmol · kg−1 · min−1(22, 36, and 32%, respectively, greater than control). Nonhepatic glucose uptake increased significantly during delivery of GLP-1 at 5.1 and 10 pmol · kg−1 · min−1(25 and 46% greater than control) and tended ( P = 0.1) to increase during GLP-1 infusion at 20 pmol · kg−1 · min−1(24% greater than control). Intraportal infusion of GLP-1 at high physiological and pharmacological rates increased glucose disposal primarily in nonhepatic tissues.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
R. W. A. Mackenzie ◽  
P. Watt

Although the mechanisms are largely unidentified, the chronic or intermittent hypoxic patterns occurring with respiratory diseases, such as chronic pulmonary disease or obstructive sleep apnea (OSA) and obesity, are commonly associated with glucose intolerance. Indeed, hypoxia has been widely implicated in the development of insulin resistance either via the direct action on insulin receptor substrate (IRS) and protein kinase B (PKB/Akt) or indirectly through adipose tissue expansion and systemic inflammation. Yet hypoxia is also known to encourage glucose transport using insulin-dependent mechanisms, largely reliant on the metabolic master switch, 5′ AMP-activated protein kinase (AMPK). In addition, hypoxic exposure has been shown to improve glucose control in type 2 diabetics. The literature surrounding hypoxia-induced changes to glycemic control appears to be confusing and conflicting. How is it that the same stress can seemingly cause insulin resistance while increasing glucose uptake? There is little doubt that acute hypoxia increases glucose metabolism in skeletal muscle and does so using the same pathway as muscle contraction. The purpose of this review paper is to provide an insight into the mechanisms underpinning the observed effects and to open up discussions around the conflicting data surrounding hypoxia and glucose control.


2013 ◽  
Vol 38 (5) ◽  
pp. 512-519 ◽  
Author(s):  
Andrea S. Cornford ◽  
Alexander Hinko ◽  
Rachael K. Nelson ◽  
Ariel L. Barkan ◽  
Jeffrey F. Horowitz

Prolonged overeating and the resultant weight gain are clearly linked with the development of insulin resistance and other cardiometabolic abnormalities, but adaptations that occur after relatively short periods of overeating are not completely understood. The purpose of this study was to characterize metabolic adaptations that may accompany the development of insulin resistance after 2 weeks of overeating. Healthy, nonobese subjects (n = 9) were admitted to the hospital for 2 weeks, during which time they ate ∼4000 kcals·day−1 (70 kcal·kg−1 fat free mass·day−1). Insulin sensitivity was estimated during a meal tolerance test, and a muscle biopsy was obtained to assess muscle lipid accumulation and protein markers associated with insulin resistance, inflammation, and the regulation of lipid metabolism. Whole-body insulin sensitivity declined markedly after 2 weeks of overeating (Matsuda composite index: 8.3 ± 1.3 vs. 4.6 ± 0.7, p < 0.05). However, muscle markers of insulin resistance and inflammation (i.e., phosphorylation of IRS-1-Ser312, Akt-Ser473, and c-Jun N-terminal kinase) were not altered by overeating. Intramyocellular lipids tended to increase after 2 weeks of overeating (triacylglyceride: 7.6 ± 1.6 vs. 10.0 ± 1.8 nmol·mg−1 wet weight; diacylglyceride: 104 ± 10 vs. 142 ± 23 pmol·mg−1 wet weight) but these changes did not reach statistical significance. Overeating induced a 2-fold increase in 24-h insulin response (area under the curve (AUC); p < 0.05), with a resultant ∼35% reduction in 24-h plasma fatty acid AUC (p < 0.05). This chronic reduction in circulating fatty acids may help explain the lack of a robust increase in muscle lipid accumulation. In summary, our findings suggest alterations in skeletal muscle metabolism may not contribute meaningfully to the marked whole-body insulin resistance observed after 2 weeks of overeating.


Endocrinology ◽  
2013 ◽  
Vol 154 (12) ◽  
pp. 4503-4511 ◽  
Author(s):  
Niels-Erik Viby ◽  
Marie S. Isidor ◽  
Katrine B. Buggeskov ◽  
Steen S. Poulsen ◽  
Jacob B. Hansen ◽  
...  

The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease. Female mice were sensitized with injected ovalbumin and treated with GLP-1 receptor (GLP-1R) agonists. Exacerbation was induced with inhalations of ovalbumin and lipopolysaccharide. Lung function was evaluated with a measurement of enhanced pause in a whole-body plethysmograph. mRNA levels of GLP-1R, surfactants (SFTPs), and a number of inflammatory markers were measured. GLP-1R was highly expressed in lung tissue. Mice treated with GLP-1R agonists had a noticeably better clinical appearance than the control group. Enhanced pause increased dramatically at day 17 in all control mice, but the increase was significantly less in the groups of GLP-1R agonist-treated mice (P &lt; .001). Survival proportions were significantly increased in GLP-1R agonist-treated mice (P &lt; .01). SFTPB and SFTPA were down-regulated and the expression of inflammatory cytokines were increased in mice with obstructive lung disease, but levels were largely unaffected by GLP-1R agonist treatment. These results show that GLP-1R agonists have potential therapeutic potential in the treatment of obstructive pulmonary diseases, such as chronic obstructive pulmonary disease, by decreasing the severity of acute exacerbations. The mechanism of action does not seem to be the modulation of inflammation and SFTP expression.


Diabetologia ◽  
2021 ◽  
Author(s):  
Theresia Sarabhai ◽  
Chrysi Koliaki ◽  
Lucia Mastrototaro ◽  
Sabine Kahl ◽  
Dominik Pesta ◽  
...  

Abstract Aims/hypothesis Energy-dense nutrition generally induces insulin resistance, but dietary composition may differently affect glucose metabolism. This study investigated initial effects of monounsaturated vs saturated lipid meals on basal and insulin-stimulated myocellular glucose metabolism and insulin signalling. Methods In a randomised crossover study, 16 lean metabolically healthy volunteers received single meals containing safflower oil (SAF), palm oil (PAL) or vehicle (VCL). Whole-body glucose metabolism was assessed from glucose disposal (Rd) before and during hyperinsulinaemic–euglycaemic clamps with d-[6,6-2H2]glucose. In serial skeletal muscle biopsies, subcellular lipid metabolites and insulin signalling were measured before and after meals. Results SAF and PAL raised plasma oleate, but only PAL significantly increased plasma palmitate concentrations. SAF and PAL increased myocellular diacylglycerol and activated protein kinase C (PKC) isoform θ (p < 0.05) but only PAL activated PKCɛ. Moreover, PAL led to increased myocellular ceramides along with stimulated PKCζ translocation (p < 0.05 vs SAF). During clamp, SAF and PAL both decreased insulin-stimulated Rd (p < 0.05 vs VCL), but non-oxidative glucose disposal was lower after PAL compared with SAF (p < 0.05). Muscle serine1101-phosphorylation of IRS-1 was increased upon SAF and PAL consumption (p < 0.05), whereas PAL decreased serine473-phosphorylation of Akt more than SAF (p < 0.05). Conclusions/interpretation Lipid-induced myocellular insulin resistance is likely more pronounced with palmitate than with oleate and is associated with PKC isoforms activation and inhibitory insulin signalling. Trial registration ClinicalTrials.gov.NCT01736202. Funding German Federal Ministry of Health, Ministry of Culture and Science of the State North Rhine-Westphalia, German Federal Ministry of Education and Research, European Regional Development Fund, German Research Foundation, German Center for Diabetes Research. Graphical abstract


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Vitor Fernandes Martins ◽  
Samuel LaBarge ◽  
Kristoffer Svensson ◽  
Jennifer M Cunliffe ◽  
Dion Banoian ◽  
...  

Abstract Introduction: Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. Methods: We used Cre-LoxP methodology to generate mice with a tamoxifen-inducible, conditional knock out of Ep300 and/or Crebbp in skeletal muscle. At 13-15 weeks of age, the knockout was induced via oral gavage of tamoxifen and oral glucose tolerance, ex vivo skeletal muscle insulin sensitivity, and microarray and proteomics analysis were done. Results: Loss of both p300 and CBP in adult mouse skeletal muscle rapidly and severely impairs whole body glucose tolerance and skeletal muscle insulin sensitivity. Furthermore, giving back a single allele of either p300 or CBP rescues both phenotypes. Moreover, the severe insulin resistance in the p300/CBP double knockout mice is accompanied by significant changes in both mRNA and protein expression of transcript/protein networks critical for insulin signaling, GLUT4 trafficking, and metabolism. Lastly, in human skeletal muscle samples, p300 and CBP protein levels correlate significantly and negatively with markers of insulin resistance. Conclusions: p300 and CBP are jointly required for maintaining whole body glucose tolerance and insulin sensitivity in skeletal muscle.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-322073
Author(s):  
Giulia Angelini ◽  
Serenella Salinari ◽  
Lidia Castagneto-Gissey ◽  
Alessandro Bertuzzi ◽  
James Casella-Mariolo ◽  
...  

ObjectiveTo assess the role of jejunum in insulin resistance in humans and in experimental animals.DesignTwenty-four subjects undergoing biliopancreatic diversion (BPD) or Roux-en-Y gastric bypass (RYGB) were enrolled. Insulin sensitivity was measured at baseline and at 1 week after surgery using oral glucose minimal model.We excluded the jejunum from intestinal continuity in pigs and created a jejunal loop with its vascular and nerve supply intact accessible from two cutaneous stomas, and reconnected the bowel with an end-to-end anastomosis. Glucose stable isotopes were given in the stomach or in the jejunal loop.In vitro studies using primary porcine and human hepatocytes or myoblasts tested the effects of plasma on gluconeogenesis or glucose uptake and insulin signalling.ResultsWhole-body insulin sensitivity (SI∙104: 0.54±0.12 before vs 0.82±0.11 after BPD, p=0.024 and 0.41±0.09 before vs 0.65±0.09/pM/min after RYGB, p=not significant) and Glucose Disposition Index increased only after BPD. In pigs, insulin sensitivity was significantly lower when glucose was administered in the jejunal loop than in the stomach (glucose rate of disappearance (Rd) area under the curve (AUC)/insulin AUC∙10: 1.82±0.31 vs 2.96±0.33 mmol/pM/min, p=0.0017).Metabolomics showed a similar pattern before surgery and during jejunal-loop stimulation, pointing to a higher expression of gluconeogenetic substrates, a metabolic signature of impaired insulin sensitivity.A greater hepatocyte phosphoenolpyruvate-carboxykinase and glucose-6-phosphatase gene expression was elicited with plasma from porcine jejunal loop or before surgery compared with plasma from jejunectomy in pigs or jejunal bypass in humans.Stimulation of myoblasts with plasma from porcine jejunal loop or before surgery reduced glucose uptake, Ser473-Akt phosphorylation and GLUT4 expression compared with plasma obtained during gastric glucose administration after jejunectomy in pigs or after jejunal bypass in humans.ConclusionProximal gut plays a crucial role in controlling insulin sensitivity through a distinctive metabolic signature involving hepatic gluconeogenesis and muscle insulin resistance. Bypassing the jejunum is beneficial in terms of insulin-mediated glucose disposal in obesity.Trial registration numberNCT03111953.


Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2142-2151 ◽  
Author(s):  
Miles J. De Blasio ◽  
Kathryn L. Gatford ◽  
M. Lyn Harland ◽  
Jeffrey S. Robinson ◽  
Julie A. Owens

Poor growth before birth is associated with impaired insulin sensitivity later in life, increasing the risk of type 2 diabetes. The tissue sites at which insulin resistance first develops after intrauterine growth restriction (IUGR), and its molecular basis, are unclear. We have therefore characterized the effects of placental restriction (PR), a major cause of IUGR, on whole-body insulin sensitivity and expression of molecular determinants of insulin signaling and glucose uptake in skeletal muscle and liver of young lambs. Whole-body insulin sensitivity was measured at 30 d by hyperinsulinaemic euglycaemic clamp and expression of insulin signaling genes (receptors, pathways, and targets) at 43 d in muscle and liver of control (n = 15) and PR (n = 13) lambs. PR reduced size at birth and increased postnatal growth, fasting plasma glucose (+15%, P = 0.004), and insulin (+115%, P = 0.009). PR reduced whole-body insulin sensitivity (−43%, P &lt; 0.001) and skeletal muscle expression of INSR (−36%), IRS1 (−28%), AKT2 (−44%), GLUT4 (−88%), GSK3α (−35%), and GYS1 (−31%) overall (each P &lt; 0.05) and decreased AMPKγ3 expression in females (P = 0.030). PR did not alter hepatic expression of insulin signaling and related genes but increased GLUT2 expression (P = 0.047) in males. Whole-body insulin sensitivity correlated positively with skeletal muscle expression of IRS1, AKT2, HK, AMPKγ2, and AMPKγ3 in PR lambs only (each P &lt; 0.05) but not with hepatic gene expression in control or PR lambs. Onset of insulin resistance after PR and IUGR is accompanied by, and can be accounted for by, reduced expression of insulin signaling and metabolic genes in skeletal muscle but not liver.


Sign in / Sign up

Export Citation Format

Share Document