scholarly journals PTH Induction of Transcriptional Activity of the cAMP Response Element-Binding Protein Requires the Serine 129 Site and Glycogen Synthase Kinase-3 Activity, But Not Casein Kinase II Sites

Endocrinology ◽  
2002 ◽  
Vol 143 (2) ◽  
pp. 674-682 ◽  
Author(s):  
Darren R. Tyson ◽  
John T. Swarthout ◽  
Stephen C. Jefcoat ◽  
Nicola C. Partridge
1999 ◽  
Vol 338 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Kumiko SAEKI ◽  
Akira YUO ◽  
Fumimaro TAKAKU

We report that the cAMP response element binding protein (CREB) undergoes cell-cycle-regulated phosphorylation. In human amnion FL cells, CREB was expressed as two forms with different molecular masses, 45 and 45.5 kDa. Although asynchronous cells contained predominantly the 45 kDa forms, this form shifted to 45.5 kDa when the cells were synchronized with the early S-phase. Furthermore the expression of the 45.5 kDa band was increased when cells were treated with okadaic acid, confirming that the 45.5 kDa band was a phosphorylated form of the 45 kDa band. Mutation analysis indicated that neither Ser133, the target of cAMP-dependent protein kinase and calcium calmodulin kinase, nor Ser129, the target of glycogen synthetase kinase 3, was responsible for the expression of the 45.5 kDa band, but that Ser108, Ser111 and Ser114, located in a region matching the consensus sequence for the casein kinase II target, were required. A mutant in which Ser111 and Ser114 were each replaced by a glutamic residue, mimicking a phosphorylated state, had a higher activation potential in cAMP response element-mediated transcription. These results strongly suggest that the casein kinase II target region is involved in cell cycle-regulated phosphorylation of the CREB protein and also in transcriptional enhancement.


2016 ◽  
Vol 36 (1) ◽  
Author(s):  
Qingming Dong ◽  
Francesco Giorgianni ◽  
Sarka Beranova-Giorgianni ◽  
Xiong Deng ◽  
Robert N. O'Meally ◽  
...  

We have identified Serine 73 as a novel GSK-3β site on SREBP-1c that alters its affinity for SCAP, and proteasomal degradation. Phosphorylation of Serine 73 by GSK-3β during starvation (insulin-depleted stat) may lead to lower levels of SREBP-1c; conversely, de-phosphorylation of this site may be involved in stabilizing SREBP-1c by insulin (by blocking GSK-3β action). A functional role of this site needs to be corroborated in vivo.


2004 ◽  
Vol 384 (2) ◽  
pp. 281-286 ◽  
Author(s):  
Cristina SANZ ◽  
Maria J. CALASANZ ◽  
Enrique ANDREU ◽  
Carlos RICHARD ◽  
Felipe PROSPER ◽  
...  

NALP1 (also called DEFCAP, NAC, CARD7) has been shown to play a central role in the activation of inflammatory caspases and processing of pro-IL1β (pro-interleukin-1β). Previous studies showed that NALP1 is highly expressed in peripheral blood mononuclear cells. In the present study, we report that expression of NALP1 is absent from CD34+ haematopoietic blast cells, and its levels are upregulated upon differentiation of CD34+ cells into granulocytes and to a lesser extent into monocytes. In peripheral blood cells, the highest levels of NALP1 were observed in CD3+ (T-lymphocytes), CD15+ (granulocytes) and CD14+ (monocytes) cell populations. Notably, the expression of NALP1 was significantly increased in the bone marrow blast cell population of some patients with acute leukaemia, but not among tissue samples from thyroid and renal cancer. A search for consensus sites within the NALP1 promoter revealed a sequence for CREB (cAMP-response-element-binding protein) that was required for transcriptional activity. Moreover, treatment of TF1 myeloid leukaemia cells with protein kinase C and protein kinase A activators induced CREB phosphorylation and upregulated the mRNA and protein levels of NALP1. Conversely, ectopic expression of a dominant negative form of CREB in TF1 cells blocked the transcriptional activity of the NALP1 promoter and significantly reduced the expression of NALP1. Thus NALP1 is transcriptionally regulated by CREB in myeloid cells, a mechanism that may contribute to modulate the response of these cells to pro-inflammatory stimuli.


Sign in / Sign up

Export Citation Format

Share Document