scholarly journals Leptin-Induced Leptin Resistance Reveals Separate Roles for the Anorexic and Thermogenic Responses in Weight Maintenance

Endocrinology ◽  
2002 ◽  
Vol 143 (8) ◽  
pp. 3026-3035 ◽  
Author(s):  
Philip J. Scarpace ◽  
Michael Matheny ◽  
Yi Zhang ◽  
Eugene W. Shek ◽  
Victor Prima ◽  
...  

Abstract The purpose of this study was to determine whether leptin induces leptin resistance by examining the temporal attenuation of the anorexic and energy expenditure responses to leptin. We administered recombinant adeno-associated virus encoding rat leptin cDNA or control viral vector into mildly obese rats for 138 d and compared these results with those from pair-fed rats. We measured food consumption, body weight, oxygen consumption, leptin signal transduction, and brown adipose tissue uncoupling protein 1. The anorexic response attenuated by d 25, whereas the increase in energy expenditure persisted for 83 d before attenuating. Despite attenuation of physiological responses, phosphorylated signal transducer and activator of transcription-3 remained elevated for the duration of the study. The temporal differential attenuation of the anorexic and thermogenic responses allowed us to determine the relative contributions of each response to weight maintenance. The anorexic response predominantly mediated the initial loss of body weight, but only the energy expenditure response was necessary to maintain the reduced weight. This study provides evidence that leptin induces leptin resistance. The leptin resistance was associated with persistent elevation in hypothalamic phosphorylated signal transducer and activator of transcription-3 and was characterized by a rapid attenuation of the anorexic response and slower onset for the attenuation of the energy expenditure response. We propose that both elevated leptin and obesity may be necessary for the development of leptin resistance.

2021 ◽  
Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershaeuser ◽  
Stefanie Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion Conclusively, we show that UCP1 does not protect against diet-induced obesity at thermoneutrality. Further we introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1598-1610 ◽  
Author(s):  
Maria M. Glavas ◽  
Melissa A. Kirigiti ◽  
Xiao Q. Xiao ◽  
Pablo J. Enriori ◽  
Sarah K. Fisher ◽  
...  

Childhood obesity increases the risk of adult obesity and diabetes, suggesting that early overnutrition permanently programs altered energy and glucose homeostasis. In the present studies, we used a mouse model to investigate whether early overnutrition increases susceptibility to obesity and insulin resistance in response to a high-fat diet (HFD). Litters from Swiss Webster dams were culled to three [chronic postnatal overnutrition (CPO)] or 10 (control) pups and then weaned onto standard chow at postnatal day (P) 23. At 6 wk of age, a subset of mice was placed on HFD, and glucose and insulin tolerance were examined at 16–17 wk of age. Leptin sensitivity was determined by hypothalamic phosphorylated signal transducer and activator of transcription-3 immunoreactivity at P16 and adulthood after ip leptin. CPO mice exhibited accelerated body weight gain and hyperleptinemia during the preweaning period but only a slightly heavier body weight and normal glucose tolerance in adulthood on standard chow diet. Importantly, CPO mice exhibited significant leptin resistance in the arcuate nucleus, demonstrated by reduced activation of phospho-signal transducer and activator of transcription-3, as early as P16 and throughout life, despite normalized leptin levels. In response to HFD, CPO but not control mice displayed insulin resistance in response to an insulin tolerance test. In conclusion, CPO mice exhibited early and persistent leptin resistance in the arcuate nucleus and, in response to HFD, rapid development of obesity and insulin resistance. These studies suggest that early overnutrition can permanently alter energy homeostasis and significantly increase susceptibility to obesity and insulin resistance.


2017 ◽  
Vol 312 (1) ◽  
pp. R74-R84 ◽  
Author(s):  
Nathan C. Winn ◽  
Victoria J. Vieira-Potter ◽  
Michelle L. Gastecki ◽  
Rebecca J. Welly ◽  
Rebecca J. Scroggins ◽  
...  

We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced “whitening” of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1−/−) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1−/− exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress ( P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet ( P < 0.05). UCP1−/− mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1−/− were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis.


2004 ◽  
Vol 287 (2) ◽  
pp. R422-R428 ◽  
Author(s):  
James P. Porter ◽  
Kristen R. Potratz

We recently reported that intracerebroventricular infusions of ANG II decreased food intake and increased energy expenditure in young rats. The aim of the present study was to determine if intracerebroventricular ANG II has similar effects in adult rats. The time course of the effect was also investigated with the idea that at earlier time points, a potential role for increased hypothalamic expression of corticotropin-releasing hormone (CRH) in the anorexia could be established. Finally, the contribution of ANG II-induced water drinking to the decrease in food intake was directly investigated. Rats received intracerebroventricular saline or ANG II using osmotic minipumps. Food intake, water intake, and body weight were measured daily. Experiments were terminated 2, 5, or 11 days after the beginning of the infusions. ANG II (∼ 32 ng·kg−1·min−1) produced a transient decrease in food intake that lasted for 4–5 days although body weight continued to be decreased for the entire experiment most likely due to increased energy expenditure as evidenced by increased uncoupling protein-1 mRNA expression in brown adipose tissue. At 11 and 5 days, the expression of CRH mRNA was decreased. At 2 days, CRH expression was not suppressed even though body weight was decreased. The decrease in food intake and body weight was identical whether or not rats were allowed to increase water consumption. These data suggest that in adult rats ANG II acts within the brain to affect food intake and energy expenditure in a manner that is not related to water intake.


Endocrinology ◽  
2016 ◽  
Vol 157 (4) ◽  
pp. 1457-1466 ◽  
Author(s):  
Miyuki Shibata ◽  
Ryoichi Banno ◽  
Mariko Sugiyama ◽  
Takashi Tominaga ◽  
Takeshi Onoue ◽  
...  

Abstract Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions.


Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3660-3670 ◽  
Author(s):  
Hu Huang ◽  
Seung Hwan Lee ◽  
Chianping Ye ◽  
Ines S. Lima ◽  
Byung-Chul Oh ◽  
...  

Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics.


2018 ◽  
Vol 237 (3) ◽  
pp. R99-R115 ◽  
Author(s):  
John-Paul Fuller-Jackson ◽  
Belinda A Henry

The balance between energy intake and energy expenditure establishes and preserves a ‘set-point’ body weight. The latter is comprised of three major components including metabolic rate, physical activity and thermogenesis. Thermogenesis is defined as the cellular dissipation of energy via heat production. This process has been extensively characterised in brown adipose tissue (BAT), wherein uncoupling protein 1 (UCP1) creates a proton leak across the inner mitochondrial membrane, diverting protons away from ATP synthesis and resulting in heat dissipation. In beige adipocytes and skeletal muscle, thermogenesis can occur independent of UCP1. Beige adipocytes have been shown to produce heat via UCP1 as well as via both futile creatine and calcium cycling pathways. On the other hand, the UCP1 homologue UCP3 is abundant in skeletal muscle and post-prandial thermogenesis has been associated with UCP3 and the futile calcium cycling. This review will focus on the differential contributions of adipose tissue and skeletal muscle in determining total thermogenic output and energy expenditure in large mammals. Sheep and pigs do not have a circumscribed brown fat depot but rather possess white fat depots that contain brown and beige adipocytes interspersed amongst white adipose tissue. This is representative of humans, where brown, beige and white adipocytes have been identified in the neck and supraclavicular regions. This review will describe the mechanisms of thermogenesis in pigs and sheep and the relative roles of skeletal muscle and adipose tissue thermogenesis in controlling body weight in larger mammals.


Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershäuser ◽  
Stefanie F. Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion We introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages. Our results demonstrate that UCP1 does not protect against diet-induced obesity at thermoneutrality.


2007 ◽  
Vol 292 (2) ◽  
pp. R868-R874 ◽  
Author(s):  
J. Zhang ◽  
M. K. Matheny ◽  
N. Tümer ◽  
M. K. Mitchell ◽  
P. J. Scarpace

High-fat (HF) feeding induces a transient increase in caloric intake and enhances energy expenditure. We hypothesized that leptin is necessary for homeostatic restoration of the HF-enhanced caloric intake and may mediate the increase in uncoupling protein-1 (UCP1) in brown adipose tissue (BAT). We employed a leptin antagonist to examine the role of leptin in these biological processes. Simultaneous central administration of leptin and increasing doses of the leptin antagonist revealed a dose-dependent inhibition of leptin-induced hypothalamic signal transducer and activator of transcription-3 phosphorylation, and 7 days of infusion of the leptin antagonist produced the predicted increase in food intake and weight gain. When delivered with exogenous leptin in a 7-day infusion, the leptin antagonist blocked leptin-mediated anorexic effects as well as the increase in BAT UCP1 protein and signal transducer and activator of transcription-3 phosphorylation. Rats were then fed an HF diet (60% kcal as fat) or chow and simultaneously infused with antagonist (25 μg/day into the lateral ventricle) for 7 days and compared with vehicle-infused chow-fed rats. Daily caloric intake of both HF groups peaked on day 2. HF feeding elevated caloric intake, which nearly normalized by day 7, whereas in the presence of the antagonist, caloric intake remained elevated. Moreover, the HF-mediated augmentation in UCP1 in BAT was prevented by the antagonist. These results demonstrate that leptin is essential for the homeostatic restoration of caloric intake after HF feeding and that this leptin antagonist is able to block central leptin signaling and leptin-mediated UCP1 elevation.


Sign in / Sign up

Export Citation Format

Share Document