scholarly journals Early Overnutrition Results in Early-Onset Arcuate Leptin Resistance and Increased Sensitivity to High-Fat Diet

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1598-1610 ◽  
Author(s):  
Maria M. Glavas ◽  
Melissa A. Kirigiti ◽  
Xiao Q. Xiao ◽  
Pablo J. Enriori ◽  
Sarah K. Fisher ◽  
...  

Childhood obesity increases the risk of adult obesity and diabetes, suggesting that early overnutrition permanently programs altered energy and glucose homeostasis. In the present studies, we used a mouse model to investigate whether early overnutrition increases susceptibility to obesity and insulin resistance in response to a high-fat diet (HFD). Litters from Swiss Webster dams were culled to three [chronic postnatal overnutrition (CPO)] or 10 (control) pups and then weaned onto standard chow at postnatal day (P) 23. At 6 wk of age, a subset of mice was placed on HFD, and glucose and insulin tolerance were examined at 16–17 wk of age. Leptin sensitivity was determined by hypothalamic phosphorylated signal transducer and activator of transcription-3 immunoreactivity at P16 and adulthood after ip leptin. CPO mice exhibited accelerated body weight gain and hyperleptinemia during the preweaning period but only a slightly heavier body weight and normal glucose tolerance in adulthood on standard chow diet. Importantly, CPO mice exhibited significant leptin resistance in the arcuate nucleus, demonstrated by reduced activation of phospho-signal transducer and activator of transcription-3, as early as P16 and throughout life, despite normalized leptin levels. In response to HFD, CPO but not control mice displayed insulin resistance in response to an insulin tolerance test. In conclusion, CPO mice exhibited early and persistent leptin resistance in the arcuate nucleus and, in response to HFD, rapid development of obesity and insulin resistance. These studies suggest that early overnutrition can permanently alter energy homeostasis and significantly increase susceptibility to obesity and insulin resistance.

Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3660-3670 ◽  
Author(s):  
Hu Huang ◽  
Seung Hwan Lee ◽  
Chianping Ye ◽  
Ines S. Lima ◽  
Byung-Chul Oh ◽  
...  

Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


Author(s):  
Randall F. D'Souza ◽  
Stewart W.C. Masson ◽  
Jonathan S. T. Woodhead ◽  
Samuel L James ◽  
Caitlin MacRae ◽  
...  

Neutrophils accumulate in insulin sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high fat diet (HFD) were randomized to receive 3x weekly i.p injections of either Prolastin (human A1AT; 2mg) or vehicle (PBS) for 10 weeks. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance or insulin sensitivity in chow fed mice. In contrast, Prolastin treatment attenuated HFD induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin-resistance by impairing insulin-induced IRS-1 signaling.


2007 ◽  
Vol 293 (1) ◽  
pp. E31-E41 ◽  
Author(s):  
Robert C. Noland ◽  
John P. Thyfault ◽  
Sarah T. Henes ◽  
Brian R. Whitfield ◽  
Tracey L. Woodlief ◽  
...  

Elevated oxidative capacity, such as occurs via endurance exercise training, is believed to protect against the development of obesity and diabetes. Rats bred both for low (LCR)- and high (HCR)-capacity endurance running provide a genetic model with inherent differences in aerobic capacity that allows for the testing of this supposition without the confounding effects of a training stimulus. The purpose of this investigation was to determine the effects of a high-fat diet (HFD) on weight gain patterns, insulin sensitivity, and fatty acid oxidative capacity in LCR and HCR male rats in the untrained state. Results indicate chow-fed LCR rats were heavier, hypertriglyceridemic, less insulin sensitive, and had lower skeletal muscle oxidative capacity compared with HCR rats. Upon exposure to an HFD, LCR rats gained more weight and fat mass, and their insulin resistant condition was exacerbated, despite consuming similar amounts of metabolizable energy as chow-fed controls. These metabolic variables remained unaltered in HCR rats. The HFD increased skeletal muscle oxidative capacity similarly in both strains, whereas hepatic oxidative capacity was diminished only in LCR rats. These results suggest that LCR rats are predisposed to obesity and that expansion of skeletal muscle oxidative capacity does not prevent excess weight gain or the exacerbation of insulin resistance on an HFD. Elevated basal skeletal muscle oxidative capacity and the ability to preserve liver oxidative capacity may protect HCR rats from HFD-induced obesity and insulin resistance.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jun Muratsu ◽  
Yoshiaki Taniyama ◽  
Fumihiro Sanada ◽  
Atsuyuki Morishima ◽  
Katsuhiko Sakaguchi ◽  
...  

Abstract Background and Aims Obesity and its associated chronic inflammation in adipose tissue initiate insulin resistance, which is related to several pathologies including hypertension and atherosclerosis. Previous reports demonstrated that circulating hepatocyte growth factor (HGF) level was associated with obesity and type 2 diabetes. However, its precise role in obesity and related-pathology is unclear. Method In this experiment, cardiac-specific over-expression of human HGF in mice (HGF-Tg mice) which showed 4-5 times higher serum HGF levels than wild-type mice were used. We chose cardiac specific HGF overexpression, as other strain of HGF transgenic mice such as liver and kidney specific HGF overexpression mice develop cancer and cystic diseases, which are rare in the heart. In the present study, using HGF-Tg mice and anti-HGF neutralizing antibody (HGF-Ab), we explored the role of HGF in obese and insulin resistance induced by high fat diet (HFD) for 14 weeks (200 or 400ug/week). Results With normal chow diet (ND), there were no significant changes in body weight between WT and HGF-Tg mice. While body weight in wild-type mice fed with HFD for 14 weeks was significantly increased accompanied with insulin resistance, HGF-Tg mice prevented body weight gain and insulin resistance. Insulin resistance in obesity arises from the combination of altered functions of insulin target cells (e.g., liver, skeletal muscle, and adipose tissue) and the accumulation of macrophages that secrete pro-inflammatory mediators in adipose tissue. The accumulation of macrophages and elevated levels of inflammatory mediators in adipose tissue were significantly inhibited in HGF-Tg mice as compared to wild-type mice. In the gWAT, the mRNA levels of the mature macrophage marker F4/80, the chemoattractants, MCP-1 and CXCL2, and the inflammatory cytokines, such as TNF-α and iNOS, were significantly increased in WT mice fed with HFD. However, these levels were markedly reduced in HGF-Tg mice fed with HFD. Additionally, activation of Akt by insulin administration was significantly reduced in the gWAT SM, and liver by HFD; however, this activation was restored in HGF-Tg mice. Moreover, insulin-induced Akt signaling was decreased in HGF-Ab groups as compared to saline group under HFD condition. Importantly, HFD significantly increased the level of HGF mRNA by approximately 2 fold in gWAT, SM, and liver without changing cMet expression. All together, these data indicate that the HGF as one of the systemic gWAT, SM, and liver-derived growth factor plays a role in compensatory mechanism against insulin-resistance through the at least anti-inflammatory effect in adipose tissue. The HFD-induced obesity in wild-type mice treated with HGF-neutralizing antibody showed an exacerbated response to the glucose tolerance test. Conclusion HGF suppresses inflammation in adipose tissue induced by a high-fat diet, and as a result improves systemic insulin resistance. These gain-of-function and loss-of-function studies demonstrated that the elevated HGF level induced by HFD have protective role against obesity and insulin resistance.


Author(s):  
Xiaobing Cui ◽  
Jia Fei ◽  
Sisi Chen ◽  
Gaylen L. Edwards ◽  
Shi-You Chen

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induce obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yunjung Baek ◽  
Mi Nam Lee ◽  
Dayong Wu ◽  
Munkyong Pae

Abstract Objectives Previously, we showed that loss of ovarian function in mice fed high-fat diet exacerbated insulin resistance and adipose tissue inflammation. In the current study, we tested whether consumption of luteolin, an anti-inflammatory flavonoid, could mitigate adipose tissue inflammation and insulin resistance in obese ovariectomized mice. Methods Nine-week-old ovariectomized C57BL/6 mice were fed a low-fat diet (LFD), high-fat diet (HFD), or HFD supplemented with 0.005% luteolin (HFD + L) for 16 weeks. The anti-inflammatory drug salicylate was used as a positive control. Fasting blood glucose, insulin, and insulin resistance index HOMA-IR were measured every 4 weeks. Adipose tissue and spleen were characterized for tissue inflammation by real-time PCR and immune cell populations by flow cytometry after 16 weeks of feeding. Results HFD resulted in more body weight gain than LFD in ovariectomized mice and supplementing HFD with 0.005% luteolin did not affect the body weight gain. In addition, HFD elicited a significant elevation in fat mass, which were comparable between HFD and HFD + L groups. However, luteolin supplementation resulted in a significant decrease in CD11c+ macrophages in gonadal adipose tissue, as well as a trend of decrease in macrophage infiltration. Luteolin supplementation also significantly decreased mRNA expression of inflammatory and M1 markers MCP-1, CD11c, TNF-a, and IL-6, while maintaining expression of M2 marker MGL1. We further found that luteolin treatment protected mice from insulin resistance induced by HFD consumption; this improved insulin resistance was correlated with reductions in CD11c+ adipose tissue macrophages. Conclusions Our findings indicate that dietary luteolin supplementation attenuates adipose tissue inflammation and insulin resistance found in mice with loss of ovarian function coupled with a HFD intake, and this effect may be partly mediated through suppressing M1-like polarization of macrophages in adipose tissue. These results have clinical implication in implementing dietary intervention for prevention of metabolic syndrome associated with postmenopause and obesity. Funding Sources Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2018R1A1A1A05078886).


2017 ◽  
Vol 45 (04) ◽  
pp. 813-832 ◽  
Author(s):  
Hyeon-Jeong Kim ◽  
Sanghwa Kim ◽  
Ah Young Lee ◽  
Yoonjeong Jang ◽  
Orkhonselenge Davaadamdin ◽  
...  

This study used an integrated approach to investigate the effects of Gymnema sylvestre (GS) extract as a functional dietary supplement with a high-fat diet. This approach examined insulin resistance, the dysfunction of adipose tissue, and liver steatosis. Male C57BL/6J mice were fed a normal chow or high-fat diet (HFD) for the acute and chronic study, in addition to GS in different doses (100, 250 and 500[Formula: see text]mg/kg body weight). Their body composition changes, serum lipid and glucose parameters, adipose and liver tissue histology, and gene expression were measured. It was found that GS significantly suppressed the increase of body weight, serum levels of lipid, insulin and leptin, and adipose tissue, and liver inflammation. GS also demonstrated hypoglycemic effects due to the amylase inhibition activity. Our results support the existence of a relationship between the HFD induced insulin resistance, adipose dysfunction and liver steatosis. In conclusion, GS works as a functional dietary supplement with preventative effects against metabolic disorder.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Rosa Martha Perez Gutierrez ◽  
Diana Madrigales Ahuatzi ◽  
Maria del Carmen Horcacitas ◽  
Efren Garcia Baez ◽  
Teresa Cruz Victoria ◽  
...  

Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect ofPhalaris canariensisseeds hexane extract (Al-H) in high-fat diet- (HFD-) induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD) and severely diabetic (SD) mice.AL-H was orally administered to MD and SD mice at a dose of 400 mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 345-345
Author(s):  
Kate Ormiston ◽  
Zihan Zhang ◽  
Kelly Murphy ◽  
A Courtney DeVries ◽  
Maryam Lustberg ◽  
...  

Abstract Objectives Our objective was to examine effects of dietary enrichment of eicosapentaenoic acid + docosahexaenoic acid (EPA + DHA) on high fat diet-induced insulin resistance during chemotherapy. Methods Adult, female C57Bl/6 mice (n = 48) were assigned to 1 of 3 diets; low-fat diet (LF; 10% kcals fat), high-fat diet (HF; 45% kcals fat), or HF diet with omega-3 s (HF n-3; 2% kcals EPA + DHA) for 7 weeks. Mice received vehicle or chemotherapy injections (doxorubicin + cyclophosphamide), by tail vein at week 4 and 6. Food intake and body weights were recorded. Fasted blood glucose and serum insulin were measured weekly.  Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. Body composition was measured using Echo MRI. Data were analyzed using ANOVA; p &lt; 0.05 was considered significant. Results Total kilocalories significantly differed by group (p &lt; 0.001); HF and HF n-3 groups consumed more than the LF group (p &lt; 0.001, p &lt; 0.0001; respectively). Obesity was induced prior to first injection with body weights being significantly different (p &lt; 0.01); the LF group weighed less than the HF n-3 group (p &lt; 0.01), and there was a similar trend between LF and HF groups (p = 0.0519). Body weights at sacrifice significantly differed (p &lt; 0.0001); chemotherapy mice weighed less than vehicle (p &lt; 0.0001). Percent body fat at sacrifice significantly differed (p &lt; 0.0001); chemotherapy mice had less fat than vehicle (p &lt; 0.0001), and the LF group had less fat than HF  (p &lt; 0.01) and HF n-3 group (p &lt; 0.01). Blood glucose significantly differed at sacrifice (p &lt; 0.01); chemotherapy mice had lower glucose than vehicle (p &lt; 0.05) and HF group had higher glucose than LF group (p &lt; 0.01). HOMA-IR scores at sacrifice significantly differed (p &lt; 0.05); chemotherapy mice had lower scores than vehicle  (p &lt; 0.05) and mice on the LF and HF n-3 diets had lower scores than the HF diet (p &lt; 0.01; p &lt; 0.05 respectively). Conclusions Chemotherapy lowered body weight and body fat in mice, potentially contributing to decreases in blood glucose and insulin resistance. EPA + DHA enrichment of a HF diet reduced insulin resistance in mice comparable to a LF diet group. This occurred in both chemotherapy and vehicle treated mice, despite LF diet-fed mice having lower body weight and adiposity. Underlying mechanisms are being investigated. Funding Sources NIH #5R01CA18994.


Sign in / Sign up

Export Citation Format

Share Document