Effect of intracerebroventricular angiotensin II on body weight and food intake in adult rats

2004 ◽  
Vol 287 (2) ◽  
pp. R422-R428 ◽  
Author(s):  
James P. Porter ◽  
Kristen R. Potratz

We recently reported that intracerebroventricular infusions of ANG II decreased food intake and increased energy expenditure in young rats. The aim of the present study was to determine if intracerebroventricular ANG II has similar effects in adult rats. The time course of the effect was also investigated with the idea that at earlier time points, a potential role for increased hypothalamic expression of corticotropin-releasing hormone (CRH) in the anorexia could be established. Finally, the contribution of ANG II-induced water drinking to the decrease in food intake was directly investigated. Rats received intracerebroventricular saline or ANG II using osmotic minipumps. Food intake, water intake, and body weight were measured daily. Experiments were terminated 2, 5, or 11 days after the beginning of the infusions. ANG II (∼ 32 ng·kg−1·min−1) produced a transient decrease in food intake that lasted for 4–5 days although body weight continued to be decreased for the entire experiment most likely due to increased energy expenditure as evidenced by increased uncoupling protein-1 mRNA expression in brown adipose tissue. At 11 and 5 days, the expression of CRH mRNA was decreased. At 2 days, CRH expression was not suppressed even though body weight was decreased. The decrease in food intake and body weight was identical whether or not rats were allowed to increase water consumption. These data suggest that in adult rats ANG II acts within the brain to affect food intake and energy expenditure in a manner that is not related to water intake.

2021 ◽  
Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershaeuser ◽  
Stefanie Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion Conclusively, we show that UCP1 does not protect against diet-induced obesity at thermoneutrality. Further we introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages.


Endocrinology ◽  
2016 ◽  
Vol 157 (4) ◽  
pp. 1457-1466 ◽  
Author(s):  
Miyuki Shibata ◽  
Ryoichi Banno ◽  
Mariko Sugiyama ◽  
Takashi Tominaga ◽  
Takeshi Onoue ◽  
...  

Abstract Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions.


2002 ◽  
Vol 282 (2) ◽  
pp. R445-R453 ◽  
Author(s):  
Lisa Cassis ◽  
Marc Helton ◽  
Vicki English ◽  
Gerome Burke

Previous studies demonstrated that angiotensin II (ANG II) decreases body weight. This study examined whether ANG II regulates body weight through energy expenditure. Acute ANG II administration decreased oxygen consumption. To determine whether this effect was maintained, rats were infused with ANG II or saline for 14 days. Oxygen consumption was transiently decreased on day 1 of ANG II infusion; however, body weight and food intake were reduced for 14 days. In pair-feeding studies, reductions in food intake accounted for 63% of the effect of ANG II on body weight but did not influence systolic pressure, water intake, or oxygen consumption. With 28 days of ANG II infusion, differences in body weight between ANG II and control rats were of greater magnitude. An initial decrease in oxygen consumption was followed by a rebound increase. Coadministration of losartan prevented the effect of ANG II on body weight, food intake, blood pressure, and water intake. However, losartan only partially prevented ANG II reductions in oxygen consumption. These results demonstrate that ANG II transiently decreases oxygen consumption through mechanisms unrelated to food intake. With chronic ANG II exposure, energy expenditure may contribute to sustained reductions in body weight.


Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershäuser ◽  
Stefanie F. Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion We introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages. Our results demonstrate that UCP1 does not protect against diet-induced obesity at thermoneutrality.


2017 ◽  
Vol 312 (1) ◽  
pp. R74-R84 ◽  
Author(s):  
Nathan C. Winn ◽  
Victoria J. Vieira-Potter ◽  
Michelle L. Gastecki ◽  
Rebecca J. Welly ◽  
Rebecca J. Scroggins ◽  
...  

We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced “whitening” of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1−/−) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1−/− exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress ( P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet ( P < 0.05). UCP1−/− mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1−/− were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis.


2011 ◽  
Vol 236 (11) ◽  
pp. 1274-1281 ◽  
Author(s):  
Yuko Okamatsu-Ogura ◽  
Junko Nio-Kobayashi ◽  
Toshihiko Iwanaga ◽  
Akira Terao ◽  
Kazuhiro Kimura ◽  
...  

Leptin reduces body fat by decreasing food intake and increasing energy expenditure. Uncoupling protein (UCP) 1, a key molecule for brown adipose tissue (BAT) thermogenesis, was reported to contribute to the stimulatory effect of leptin on energy expenditure. To clarify whether UCP1 is also involved in the anorexigenic effect of leptin, in this study we examined the effect of leptin on food intake using wild-type (WT) and UCP1-deficient (UCP1-KO) mice. Repeated injection of leptin decreased food intake more markedly in WT mice than in UCP1-KO mice, while a single injection of leptin showed similar effects in the two groups of mice. As chronic leptin stimulation induces UCP1 expression in BAT and ectopically in white adipose tissue (WAT), we mimicked the UCP1 induction by repeated injection of CL316,243 (CL), a highly specific β3-adrenoceptor agonist, and measured food intake in response to a single injection of leptin. Two-week treatment with CL enhanced the anorexigenic effect of leptin in WT mice, but not in UCP1-KO mice. Three-day treatment with CL in WT mice also enhanced the anorexigenic effect of leptin and leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in the arcuate nucleus of the hypothalamus, without any notable change in adiposity. These results indicate that UCP1 enhances leptin action at the hypothalamus level, suggesting UCP1 contributes to the control of energy balance not only through the regulation of energy expenditure but also through appetite control by modulating leptin action.


1986 ◽  
Vol 251 (6) ◽  
pp. R1118-R1125
Author(s):  
T. J. Bartness ◽  
C. J. Billington ◽  
A. S. Levine ◽  
J. E. Morley ◽  
N. E. Rowland ◽  
...  

The role of insulin in metabolic efficiency (ME, i.e., efficiency of body wt gain) was examined under conditions of maximal energy expenditure in control and diabetic rats. Long-lasting insulin was administered using a protocol that did not affect food intake and increased ME in both groups. Half the animals were injected chronically with norepinephrine (NE). NE alone in controls decreased body weight and ME and increased brown adipose tissue (BAT) growth, thermogenic potential [cytochrome c oxidase activity (COA)], and lipoprotein lipases (LPL) activity; however, in diabetics, body weight, ME, and food intake all decreased and only BAT LPL activity and DNA content increased. The combination of NE and insulin increased BAT protein and COA in diabetics; in controls, all BAT measures were further increased and ME was intermediate to that of either treatment alone. Cold exposure decreased body weight and ME, increased food intake and qualitatively produced similar increases in BAT growth, COA, and LPL activity in both controls and diabetics. In diabetics, combined cold exposure and insulin did not affect the increase in BAT growth or LPL activity resulting from either treatment alone, but in controls this combination decreased BAT growth and COA. It is concluded that, even under conditions of maximal energy expenditure, both extremes of basal insulin status result in decreased BAT growth and thermogenic potential, but have opposite effects on ME.


1997 ◽  
Vol 273 (5) ◽  
pp. R1612-R1622 ◽  
Author(s):  
Igor I. Rybkin ◽  
You Zhou ◽  
Julia Volaufova ◽  
Gennady N. Smagin ◽  
Donna H. Ryan ◽  
...  

Three experiments were conducted to investigate the effect of restraint stress applied at different times of the light-dark cycle on feeding behavior and body weight of rats. Sprague-Dawley rats were restrained for 3 h in restraining tubes either at the start or the end of the light cycle. There was a significant reduction in food intake on the day of restraint and no change in food intake during a 10-day recovery period in either experiment. Reductions of food intake on the day of restraint were about the same for both restrained groups compared with their controls. When stress was applied in the evening, eating was inhibited during the first 2 h after restraint, whereas in rats restrained in the morning, feeding was suppressed twice: during the 4 h after restraint and during the first 2 h of the dark cycle. Restraint induced a significant weight loss that was greater in the rats stressed in the morning. Neuropeptide Y (NPY) levels determined at the time of food suppression for both experiments (beginning of the dark cycle) revealed an elevation of NPY in the paraventricular nucleus of rats stressed in the morning compared with other groups, but no difference in hypothalamic NPY mRNA expression. Expression of uncoupling protein mRNA in brown adipose tissue and leptin mRNA in epididymal fat, measured at the start of the dark period, was not altered by stress. There was an elevation of dopamine turnover in the hypothalami of rats restrained at the end of light cycle, but not those restrained in the morning. These results show that restraint stress has a greater effect on metabolism and energy balance when it is applied in the morning. Additional studies are needed to elucidate mechanisms involved in the suppression of food intake 9 h after restraint.


Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3547-3554 ◽  
Author(s):  
Takayuki Masaki ◽  
Go Yoshimichi ◽  
Seiichi Chiba ◽  
Tohru Yasuda ◽  
Hitoshi Noguchi ◽  
...  

Abstract To examine the functional role of CRH in the regulation of energy homeostasis by leptin, we measured the effects of the CRH antagonist, α-helical CRH 8–41 (αCRH) on a number of factors affected by leptin activity. These included food intake, body weight, hypothalamic c-fos-like immunoreactivity (c-FLI), weight and histological characterization of white adipose tissue, and mRNA expressions of uncoupling protein (UCP) in brown adipose tissue (BAT) in C57Bl/6 mice. Central infusion of leptin into the lateral cerebroventricle (icv) caused significant induction of c-FLI in the paraventricular nucleus (PVN), ventromedial hypothalamic nucleus (VMH), dorsomedial hypothalamic nucleus, and arcuate nucleus. In all these nuclei, the effect of leptin on expression of cFLI in the PVN and VMH was decreased by treatment with αCRH. Administration of leptin markedly decreased cumulative food intake and body weight with this effect being attenuated by pretreatment with αCRH. In peripheral tissue, leptin up-regulated BAT UCP1 mRNA expression and reduced fat depositions in this tissue. Those changes in BAT were also decreased by treatment with αCRH. As a consequence of the effects on food intake or energy expenditure, treatment with αCRH attenuated the leptin-induced reduction of body adiposity, fat cell size, triglyceride contents, and ob mRNA expression in white adipose tissue. Taken together, these results indicate that CRH neurons in the PVN and VMH may be an important mediator for leptin that contribute to regulation of feeding, adiposity, and UCP expression.


Endocrinology ◽  
2002 ◽  
Vol 143 (8) ◽  
pp. 3026-3035 ◽  
Author(s):  
Philip J. Scarpace ◽  
Michael Matheny ◽  
Yi Zhang ◽  
Eugene W. Shek ◽  
Victor Prima ◽  
...  

Abstract The purpose of this study was to determine whether leptin induces leptin resistance by examining the temporal attenuation of the anorexic and energy expenditure responses to leptin. We administered recombinant adeno-associated virus encoding rat leptin cDNA or control viral vector into mildly obese rats for 138 d and compared these results with those from pair-fed rats. We measured food consumption, body weight, oxygen consumption, leptin signal transduction, and brown adipose tissue uncoupling protein 1. The anorexic response attenuated by d 25, whereas the increase in energy expenditure persisted for 83 d before attenuating. Despite attenuation of physiological responses, phosphorylated signal transducer and activator of transcription-3 remained elevated for the duration of the study. The temporal differential attenuation of the anorexic and thermogenic responses allowed us to determine the relative contributions of each response to weight maintenance. The anorexic response predominantly mediated the initial loss of body weight, but only the energy expenditure response was necessary to maintain the reduced weight. This study provides evidence that leptin induces leptin resistance. The leptin resistance was associated with persistent elevation in hypothalamic phosphorylated signal transducer and activator of transcription-3 and was characterized by a rapid attenuation of the anorexic response and slower onset for the attenuation of the energy expenditure response. We propose that both elevated leptin and obesity may be necessary for the development of leptin resistance.


Sign in / Sign up

Export Citation Format

Share Document