scholarly journals ROCK1 in AgRP Neurons Regulates Energy Expenditure and Locomotor Activity in Male Mice

Endocrinology ◽  
2013 ◽  
Vol 154 (10) ◽  
pp. 3660-3670 ◽  
Author(s):  
Hu Huang ◽  
Seung Hwan Lee ◽  
Chianping Ye ◽  
Ines S. Lima ◽  
Byung-Chul Oh ◽  
...  

Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics.

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1598-1610 ◽  
Author(s):  
Maria M. Glavas ◽  
Melissa A. Kirigiti ◽  
Xiao Q. Xiao ◽  
Pablo J. Enriori ◽  
Sarah K. Fisher ◽  
...  

Childhood obesity increases the risk of adult obesity and diabetes, suggesting that early overnutrition permanently programs altered energy and glucose homeostasis. In the present studies, we used a mouse model to investigate whether early overnutrition increases susceptibility to obesity and insulin resistance in response to a high-fat diet (HFD). Litters from Swiss Webster dams were culled to three [chronic postnatal overnutrition (CPO)] or 10 (control) pups and then weaned onto standard chow at postnatal day (P) 23. At 6 wk of age, a subset of mice was placed on HFD, and glucose and insulin tolerance were examined at 16–17 wk of age. Leptin sensitivity was determined by hypothalamic phosphorylated signal transducer and activator of transcription-3 immunoreactivity at P16 and adulthood after ip leptin. CPO mice exhibited accelerated body weight gain and hyperleptinemia during the preweaning period but only a slightly heavier body weight and normal glucose tolerance in adulthood on standard chow diet. Importantly, CPO mice exhibited significant leptin resistance in the arcuate nucleus, demonstrated by reduced activation of phospho-signal transducer and activator of transcription-3, as early as P16 and throughout life, despite normalized leptin levels. In response to HFD, CPO but not control mice displayed insulin resistance in response to an insulin tolerance test. In conclusion, CPO mice exhibited early and persistent leptin resistance in the arcuate nucleus and, in response to HFD, rapid development of obesity and insulin resistance. These studies suggest that early overnutrition can permanently alter energy homeostasis and significantly increase susceptibility to obesity and insulin resistance.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4447-4460 ◽  
Author(s):  
Sara A. Litwak ◽  
Jenny L. Wilson ◽  
Weiyi Chen ◽  
Cecilia Garcia-Rudaz ◽  
Mohammad Khaksari ◽  
...  

AbstractIn premenopausal and menopausal women in particular, suboptimal estrogens have been linked to the development of the metabolic syndrome as major contributors to fat accumulation. At the same time, estrogens have been described to have a role in regulating body metabolic status. We evaluated how endogenous or administered estrogens impact on the changes associated with high-fat diet (HFD) consumption in 2 different paradigms; ovarian-intact and in ovariectomized mice. When estradiol (E2) was cyclically administered to ovarian-intact HFD-fed mice for 12 weeks, animals gained significantly less weight than ovarian-intact vehicle controls (P < .01). This difference was mainly due to a reduced caloric intake but not to an increase in energy expenditure or locomotor activity. This E2 treatment regime to mice exposed to HFD was overall able to avoid the increase of visceral fat content to levels of those found in mice fed a regular chow diet. In the ovariectomized model, the main body weight and fat content reducing action of E2 was not only through decreasing food intake but also by increasing the whole-body energy expenditure, locomotor activity, and by inducing fat oxidation. Importantly, these animals became responsive to the anorexigenic effects of leptin in contrast to the vehicle-treated and the pair-fed control groups (P < .01). Further, in vitro hypothalamic secretion experiments revealed that treatment of obese mice with E2 is able to modulate the secretion of appetite-regulating neuropeptides; namely, E2 increased the secretion of the anorectic neuropeptide α-melanocyte-stimulating hormone and decreased the secretion of the orexigenic neuropetides neuropeptide Y and Agouti-related peptide. In conclusion, differences in response to E2 treatment of HFD-fed animals depend on their endogenous estrogenic status. Overall, E2 administration overcomes arcuate leptin resistance and partially prevents fat accumulation on these mice.


Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3459-3472 ◽  
Author(s):  
Satoshi Yoshino ◽  
Tetsurou Satoh ◽  
Masanobu Yamada ◽  
Koshi Hashimoto ◽  
Takuya Tomaru ◽  
...  

Abstract Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for the treatment of obesity with hepatosteatosis.


Endocrinology ◽  
2002 ◽  
Vol 143 (8) ◽  
pp. 3026-3035 ◽  
Author(s):  
Philip J. Scarpace ◽  
Michael Matheny ◽  
Yi Zhang ◽  
Eugene W. Shek ◽  
Victor Prima ◽  
...  

Abstract The purpose of this study was to determine whether leptin induces leptin resistance by examining the temporal attenuation of the anorexic and energy expenditure responses to leptin. We administered recombinant adeno-associated virus encoding rat leptin cDNA or control viral vector into mildly obese rats for 138 d and compared these results with those from pair-fed rats. We measured food consumption, body weight, oxygen consumption, leptin signal transduction, and brown adipose tissue uncoupling protein 1. The anorexic response attenuated by d 25, whereas the increase in energy expenditure persisted for 83 d before attenuating. Despite attenuation of physiological responses, phosphorylated signal transducer and activator of transcription-3 remained elevated for the duration of the study. The temporal differential attenuation of the anorexic and thermogenic responses allowed us to determine the relative contributions of each response to weight maintenance. The anorexic response predominantly mediated the initial loss of body weight, but only the energy expenditure response was necessary to maintain the reduced weight. This study provides evidence that leptin induces leptin resistance. The leptin resistance was associated with persistent elevation in hypothalamic phosphorylated signal transducer and activator of transcription-3 and was characterized by a rapid attenuation of the anorexic response and slower onset for the attenuation of the energy expenditure response. We propose that both elevated leptin and obesity may be necessary for the development of leptin resistance.


2014 ◽  
Vol 221 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Gustavo W Fernandes ◽  
Cintia B Ueta ◽  
Tatiane L Fonseca ◽  
Cecilia H A Gouveia ◽  
Carmen L Lancellotti ◽  
...  

Three types of beta adrenergic receptors (ARβ1–3) mediate the sympathetic activation of brown adipose tissue (BAT), the key thermogenic site for mice which is also present in adult humans. In this study, we evaluated adaptive thermogenesis and metabolic profile of a mouse withArβ2knockout (ARβ2KO). At room temperature, ARβ2KO mice have normal core temperature and, upon acute cold exposure (4 °C for 4 h), ARβ2KO mice accelerate energy expenditure normally and attempt to maintain body temperature. ARβ2KO mice also exhibited normal interscapular BAT thermal profiles during a 30-min infusion of norepinephrine or dobutamine, possibly due to marked elevation of interscapular BAT (iBAT) and ofArβ1, andArβ3mRNA levels. In addition, ARβ2KO mice exhibit similar body weight, adiposity, fasting plasma glucose, cholesterol, and triglycerides when compared with WT controls, but exhibit marked fasting hyperinsulinemia and elevation in hepaticPepck(Pck1) mRNA levels. The animals were fed a high-fat diet (40% fat) for 6 weeks, ARβ2KO mice doubled their caloric intake, accelerated energy expenditure, and inducedUcp1expression in a manner similar to WT controls, exhibiting a similar body weight gain and increase in the size of white adipocytes to the WT controls. However, ARβ2KO mice maintain fasting hyperglycemia as compared with WT controls despite very elevated insulin levels, but similar degrees of liver steatosis and hyperlipidemia. In conclusion, inactivation of the ARβ2KO pathway preserves cold- and diet-induced adaptive thermogenesis but disrupts glucose homeostasis possibly by accelerating hepatic glucose production and insulin secretion. Feeding on a high-fat diet worsens the metabolic imbalance, with significant fasting hyperglycemia but similar liver structure and lipid profile to the WT controls.


2010 ◽  
Vol 298 (5) ◽  
pp. R1409-R1416 ◽  
Author(s):  
Amy Warner ◽  
Preeti H. Jethwa ◽  
Catherine A. Wyse ◽  
Helen I'Anson ◽  
John M. Brameld ◽  
...  

The objective of this study was to determine whether the previously observed effects of photoperiod on body weight in Siberian hamsters were due to changes in the daily patterns of locomotor activity, energy expenditure, and/or feeding behavior. Adult males were monitored through a seasonal cycle using an automated comprehensive laboratory animal monitoring system (CLAMS). Exposure to a short-day photoperiod (SD; 8:16-h light-dark cycle) induced a significant decline in body weight, and oxygen consumption (V̇o2), carbon dioxide production (V̇co2), and heat production all decreased reaching a nadir by 16 wk of SD. Clear daily rhythms in locomotor activity, V̇o2, and V̇co2 were observed at the start of the study, but these all progressively diminished after prolonged exposure to SD. Rhythms in feeding behavior were also detected initially, reflecting an increase in meal frequency but not duration during the dark phase. This rhythm was lost by 8 wk of SD exposure such that food intake was relatively constant across dark and light phases. After 18 wk in SD, hamsters were transferred to a long-day photoperiod (LD; 16:8-h light-dark cycle), which induced significant weight gain. This was associated with an increase in energy intake within 2 wk, while V̇o2, V̇co2, and heat production all increased back to basal levels. Rhythmicity was reestablished within 4 wk of reexposure to long days. These results demonstrate that photoperiod impacts on body weight via complex changes in locomotor activity, energy expenditure, and feeding behavior, with a striking loss of daily rhythms during SD exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


2008 ◽  
Vol 294 (6) ◽  
pp. E1051-E1059 ◽  
Author(s):  
Christian Roy ◽  
Sabina Paglialunga ◽  
Alexandre Fisette ◽  
Patrick Schrauwen ◽  
Esther Moonen-Kornips ◽  
...  

ASP-deficient mice (C3 KO) have delayed postprandial TG clearance, are hyperphagic, and display increased energy expenditure. Markers of carbohydrate and fatty acid metabolism in the skeletal muscle and heart were examined to evaluate the mechanism. On a high-fat diet, compared with wild-type mice, C3 KO mice have increased energy expenditure, decreased RQ, lower ex vivo glucose oxidation (−39%, P = 0.018), and higher ex vivo fatty acid oxidation (+68%, P = 0.019). They have lower muscle glycogen content (−25%, P < 0.05) and lower activities for the glycolytic enzymes glycogen phosphorylase (−31%, P = 0.005), hexokinase (−43%, P = 0.007), phosphofructokinase (−51%, P < 0.0001), and GAPDH (−15%, P = 0.04). Analysis of mitochondrial enzyme activities revealed that hydroxyacyl-coenzyme A dehydrogenase was higher (+25%, P = 0.004) in C3 KO mice. Furthermore, Western blot analysis of muscle revealed significantly higher fatty acid transporter CD36 (+40%, P = 0.006) and cytochrome c (a marker of mitochondrial content; +69%, P = 0.034) levels in C3 KO mice, whereas the activity of AMP kinase was lower (−48%, P = 0.003). Overall, these results demonstrate a shift in the metabolic potential of skeletal muscle toward increased fatty acid utilization. Whether this is 1) a consequence of decreased adipose tissue storage with repartitioning toward muscle or 2) a direct result of the absence of ASP interaction with the receptor C5L2 in muscle remains to be determined. However, these in vivo data suggest that ASP inhibition could be a potentially viable approach in correcting muscle metabolic dysfunction in obesity.


2000 ◽  
pp. 535-541 ◽  
Author(s):  
Y Furuhata ◽  
R Kagaya ◽  
K Hirabayashi ◽  
A Ikeda ◽  
KT Chang ◽  
...  

BACKGROUND: Human growth hormone (hGH) transgenic (TG) rats have been produced in our laboratory. These TG rats are characterized by low circulating hGH levels, virtually no endogenous rGH secretion, and massive obesity. OBJECTIVE: To elucidate how energy balance and leptin sensitivity contributed to the establishment of this obesity. DESIGN AND METHODS: Food intake, locomotor activity and leptin concentrations in serum and cerebrospinal fluid were measured in TG rats and their non-transgenic littermates (control). The effect of intraperitoneal and intracerebroventricular injection of leptin on food intake and body weight gain was also examined. RESULTS: An increase in food intake and a decrease in locomotor activity were observed from 4 and 7 weeks of age, respectively, in the transgenic rats compared with control. Serum leptin concentrations of the transgenic rats were more than twice as high as those of control rats and were associated with an increased white adipose tissue mass and ob gene expression. Intraperitoneal injection of leptin significantly decreased food intake and body weight gain in control rats, but not in transgenic rats. Leptin concentration in the cerebrospinal fluid of transgenic rats was not different from that of control rats, and intracerebroventricular injection of leptin was similarly effective in reducing food intake and body weight gain as it was in control rats. CONCLUSIONS: These results suggest that the transgenic rats, whose GH secretion is suppressed, develop obesity due to early onset of an increase in food intake and a decrease in locomotor activity with leptin resistance resulting from deteriorating leptin transport from peripheral blood to cerebrospinal fluid.


Sign in / Sign up

Export Citation Format

Share Document