scholarly journals Glucose Intolerance, Insulin Resistance, and Hyperandrogenemia in First Degree Relatives of Women with Polycystic Ovary Syndrome

2003 ◽  
Vol 88 (5) ◽  
pp. 2031-2036 ◽  
Author(s):  
Bülent O. Yildiz ◽  
Hakan Yarali ◽  
Havva Oguz ◽  
Miyase Bayraktar

Polycystic ovary syndrome (PCOS) is associated with hyperinsulinemia, insulin resistance (IR), increased risk of glucose intolerance, and type 2 diabetes. Family studies have indicated a genetic susceptibility to PCOS. The aims of this study were 1) to assess glucose tolerance status, gonadotropins, and androgens in first degree relatives of patients with PCOS; and 2) to assess IR in normal glucose tolerant (NGT) family members. One hundred two family members of 52 patients with PCOS [MothersPCOS (n = 34; mean age, 46.5 yr; mean body mass index (BMI), 28.8 kg/m2), FathersPCOS (n = 24; mean age, 50.4 yr; mean BMI, 27.5 kg/m2), SistersPCOS (n = 19; mean age, 25.1 yr; mean BMI, 22.9 kg/m2), and BrothersPCOS (n = 25; mean age, 23.7 yr; mean BMI, 22.5 kg/m2)] and 82 unrelated healthy control subjects without a family history of diabetes or PCOS (4 age- and weight-matched subgroups, i.e. ControlMothersPCOS, ControlFathersPCOS, ControlSistersPCOS, and ControlBrothersPCOS) were studied. Glucose and insulin (at baseline and during a 75-g, 2-h oral glucose tolerance test) were measured. IR was assessed by fasting insulin (FI), fasting glucose to insulin ratio (FGI), homeostatic model assessment (HOMA IR), and area under the curve for insulin during the oral glucose tolerance test (AUCinsulin) in NGT MothersPCOS, FathersPCOS, SistersPCOS, BrothersPCOS, and matched control subgroups. Including the prestudy-diagnosed 3 mothers and 2 fathers with diabetes, diabetes and impaired glucose tolerance (IGT) were noted in 16% and 30% of MothersPCOS and 27% and 31% of FathersPCOS, respectively. There was no diabetes in SistersPCOS and BrothersPCOS. IGT was found in 5% of SistersPCOS. Impaired fasting glucose was found in 3% of MothersPCOS and 4% of BrothersPCOS. The analysis of NGT family members showed that MothersPCOS had higher FI (P < 0.05), HOMA IR (P < 0.05), and AUCinsulin (P < 0.01) and lower FGI (P < 0.05) than ControlMothersPCOS, whereas all IR parameters were comparable between FathersPCOS and their matched control subgroup. SistersPCOS had higher FI (P < 0.05), HOMA IR (P < 0.01), and AUCinsulin (P < 0.05) and lower FGI (P < 0.01), and BrothersPCOS had higher AUCinsulin (P < 0.01) than their matched control subgroups, respectively. MothersPCOS had higher testosterone levels than ControlMothersPCOS (P < 0.01 and P < 0.05 for pre- and postmenopausal women, respectively). SistersPCOS had higher LH (P < 0.01), testosterone (P < 0.001), androstenedione (P < 0.01), and dehydroepiandrosterone sulfate (P < 0.05) levels than ControlSistersPCOS. There was no difference in gonadotropin and androgen levels in FathersPCOS compared with ControlFathersPCOS or in BrothersPCOS compared with ControlBrothersPCOS. Our results suggest that 1) first degree relatives of patients with PCOS may be at high risk for diabetes and glucose intolerance; 2) NGT female family members have insulin resistance; and 3) mothers and sisters of PCOS patients have higher androgen levels than control subjects. We propose that the high risks of these impairments warrant screening in first degree relatives of patients with PCOS.

Circulation ◽  
2015 ◽  
Vol 131 (suppl_1) ◽  
Author(s):  
Yoshihiro Kokubo ◽  
Makoto Watanabe ◽  
Aya Higashiyama ◽  
Yoko M Nakao ◽  
Takashi Kobayashi ◽  
...  

Introduction: Glucose intolerance and insulin resistance are known risk factors for cardiovascular disease (CVD). However, few prospective studies were reported the association between combinations of these two factors and incident CVD. We assessed the hypothesis that insulin resistance increased the association between glucose intolerance and CVD in Japanese general population. Methods: We studied 4,638 Japanese individuals (mean age 56.1 years, without CVD) who completed a baseline medical examination and a 75g oral glucose tolerance test in the Suita Study. Glucose categories were defined as follows: diabetes mellitus (DM; fasting plasma glucose levels [FPG] ≥126 mg/dL, 2 hours post-loaded glucose levels [2h-PG] ≥ 200 mg/dL, and/or DM medication); impaired glucose tolerance (IGT; FPG <126 mg/dL and 2h-PG =140-199 mg/dL); impaired fasting glucose (IFG; FPG =100-125 mg/dL and 2h-PG <140 mg/dL); and normal glucose tolerance [NGT]. Insulin resistance was the following formula: HOMA-IR = [FPG] x [fasting insulin] / 405. Insulin resistance was defined as HOMA-IR ≥2.5. Multivariable-adjusted Cox proportional hazard ratios (HRs) and 95% confidence intervals (95% CIs) were calculated after adjusting for age, sex, body mass index, blood pressure category, hyperlipidemia, smoking, and drinking at the baseline. Results: During the 11.7-year follow-up, we documented 127 cerebral infarctions, 63 hemorrhagic stroke, 12 unclassified strokes, and 143 coronary heart disease events. The adjusted HRs (95% CIs) of subjects with FPG =100-125 mg/dL and ≥126 mg/dL were 1.38 (1.01-1.89) and 2.00 (1.12-3.58) for stroke and 1.47 (0.99-2.19) and 2.73 (1.43-5.22) for cerebral infarction, respectively, compared with the fasting NGT group. On the basis of the subjects with 2h-PG <140 mg/dL group, the adjusted HRs (95% CIs) of subjects with 2h-PG ≥200 mg/dL were 1.71 (1.07-2.72) for stroke and 2.06 (1.20-3.54) for cerebral infarction. Compared to the NGT group, the adjusted HRs (95% CIs) of the subjects with IFG, IGT, and DM were 1.59 (1.10-2.30), 1.34 (0.89-2.00), and 1.86 (1.16-3.00) for stroke and 1.82 (1.13-2.90), 1.55 (0.93-2.56), and 2.43 (1.39-4.26) for cerebral infarction, respectively. Compared to the subjects with HOMA-IR <1.5, the adjusted HRs (95% CIs) of CVD and stroke with HOMA-IR ≥2.5 were 1.45 (1.07-1.96) and 1.61 (1.07-2.42), respectively. Compared to the NGT group without insulin resistance, the IFG and DM groups with insulin resistance were observed the increased risks of stroke (HRs [95% CIs]; 2.05 [1.17-3.57] and 2.11 [1.17-3.83]) and cerebral infarction (HRs [95% CIs]; 2.45 [1.20-5.00] and 3.56 [1.84-6.88]), respectively. Conclusions: Fasting glucose intolerance and insulin resistance are predictive factors for the incidence of stroke and cerebral infarction. Insulin resistance increased the risks of incident stroke and cerebral infarction in general inhabitants with IFG and DM.


Author(s):  
Renuka Pangaluri ◽  
Shakthiya T ◽  
Vinodhini Vm

 Objective: Polycystic ovarian syndrome (PCOS) is often accompanied by insulin resistance, obesity, and cardiometabolic risk factors. Androgen excess-PCOS recommends oral glucose tolerance test or glycated hemoglobin (HbA1C) to evaluate dysglycemia in PCOS subjects. We undertook this study to evaluate the prevalence of elevated HbA1C levels in PCOS women.Methods: The study was carried out among 100 PCOS patients from SRM Hospital, 100 healthy individuals were included as controls. Fasting glucose, HbA1C, Insulin and Homeostasis Model Assessment-Insulin Resistance Index were estimated.Results: Patients with polycystic ovary syndrome showed a significant increase in HbA1C levels (5.799±1.022; 4.96±0.625, p=0.001) when compared to the control group.Conclusion: We found elevated HbA1C levels in PCOS women categorizing 26% as prediabetes and 28% as having type 2 diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document