scholarly journals Regional Anatomic Differences in Skeletal Muscle Mitochondrial Respiration in Type 2 Diabetes and Obesity

2010 ◽  
Vol 95 (2) ◽  
pp. 857-863 ◽  
Author(s):  
R. Rabøl ◽  
S. Larsen ◽  
P. M. V. Højberg ◽  
T. Almdal ◽  
R. Boushel ◽  
...  
2010 ◽  
Vol 12 (9) ◽  
pp. 806-814 ◽  
Author(s):  
R. Rabøl ◽  
R. Boushel ◽  
T. Almdal ◽  
C. N. Hansen ◽  
T. Ploug ◽  
...  

2011 ◽  
Vol 27 (3) ◽  
pp. 286-297 ◽  
Author(s):  
Fredirick L. Mashili ◽  
Reginald L. Austin ◽  
Atul S. Deshmukh ◽  
Tomas Fritz ◽  
Kenneth Caidahl ◽  
...  

2019 ◽  
Vol 51 (11) ◽  
pp. 586-595 ◽  
Author(s):  
Maria F. Pino ◽  
Natalie A. Stephens ◽  
Alexey M. Eroshkin ◽  
Fanchao Yi ◽  
Andrew Hodges ◽  
...  

The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% ( P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% ( P ≤ 0.05) and phosphatidylserine by 39.7% ( P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.


2017 ◽  
pp. 969-977 ◽  
Author(s):  
J. S. JOSEPH ◽  
A. O. AYELESO ◽  
E. MUKWEVHO

Activation of calmodulin dependent protein kinase (CaMK)II by exercise is beneficial in controlling membrane lipids associated with type 2 diabetes and obesity. Regulation of lipid metabolism is crucial in the improvement of type 2 diabetes and obesity associated symptoms. The role of CaMKII in membrane associated lipid metabolism was the focus of this study. Five to six weeks old male Wistar rats were used in this study. GC×GC-TOFMS technique was used to determine the levels of polyunsaturated fatty acids (linoleic acid, arachidonic acid and 11,14-eicosadienoic acid). Carnitine palmitoyltransferase (Cpt-1) and acetyl-CoA carboxylase (Acc-1) genes expression were assessed using quantitative real time PCR (qPCR). From the results, CaMKII activation by exercise increased the levels of arachidonic acid and 11,14-eicosadienoic acid while a decrease in the level of linolenic acid was observed in the skeletal muscle. The results indicated that exercise-induced CaMKII activation increased CPT-1 expression and decreased ACC-1 expression in rat skeletal muscle. All the observed increases with activation of CaMKII by exercise were aborted when KN93, an inhibitor of CaMKII was injected in exercising rats. This study demonstrated that CaMKII activation by exercise regulated lipid metabolism. This study suggests that CaMKII can be a vital target of therapeutic approach in the management of diseases such as type 2 diabetes and obesity that have increased to epidemic proportions recently.


Diabetes ◽  
2007 ◽  
Vol 56 (6) ◽  
pp. 1592-1599 ◽  
Author(s):  
M. Mogensen ◽  
K. Sahlin ◽  
M. Fernstrom ◽  
D. Glintborg ◽  
B. F. Vind ◽  
...  

2019 ◽  
Vol 317 (3) ◽  
pp. E503-E512 ◽  
Author(s):  
Shannon Rose ◽  
Eugenia Carvalho ◽  
Eva C. Diaz ◽  
Matthew Cotter ◽  
Sirish C. Bennuri ◽  
...  

Skeletal muscle mitochondrial respiration is thought to be altered in obesity, insulin resistance, and type 2 diabetes; however, the invasive nature of tissue biopsies is an important limiting factor for studying mitochondrial function. Recent findings suggest that bioenergetics profiling of circulating cells may inform on mitochondrial function in other tissues in lieu of biopsies. Thus, we sought to determine whether mitochondrial respiration in circulating cells [peripheral blood mononuclear cells (PBMCs) and platelets] reflects that of skeletal muscle fibers derived from the same subjects. PBMCs, platelets, and skeletal muscle (vastus lateralis) samples were obtained from 32 young (25–35 yr) women of varying body mass indexes. With the use of extracellular flux analysis and high-resolution respirometry, mitochondrial respiration was measured in intact blood cells as well as in permeabilized cells and permeabilized muscle fibers. Respiratory parameters were not correlated between permeabilized muscle fibers and intact PBMCs or platelets. In a subset of samples ( n = 12–13) with permeabilized blood cells available, raw measures of substrate (pyruvate, malate, glutamate, and succinate)-driven respiration did not correlate between permeabilized muscle (per mg tissue) and permeabilized PBMCs (per 106 cells); however, complex I leak and oxidative phosphorylation coupling efficiency correlated between permeabilized platelets and muscle (Spearman’s ρ = 0.64, P = 0.030; Spearman’s ρ = 0.72, P = 0.010, respectively). Our data indicate that bioenergetics phenotypes in circulating cells cannot recapitulate muscle mitochondrial function. Select circulating cell bioenergetics phenotypes may possibly inform on overall metabolic health, but this postulate awaits validation in cohorts spanning a larger range of insulin resistance and type 2 diabetes status.


2018 ◽  
Author(s):  
Se-Hwa Kim ◽  
Soo-Kyung Kim ◽  
Young-Ju Choi ◽  
Seok-Won Park ◽  
Eun-Jig Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document