scholarly journals SUN-266 Protein Induced Pancreatic Hormone Secretion Is Modulated by Vagal CaSR

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Mariana Norton ◽  
Simon C Cork ◽  
Aldara Martin Alonso ◽  
Anna G Roberts ◽  
Yateen S Patel ◽  
...  

Abstract The existence of a vago-vagal entero-pancreatic pathway, where sensory information from the gut can signal via vagal afferents to the brain to mediate changes in pancreatic function, has been recognised for over a century, and investigated extensively with regards to pancreatic exocrine secretions. However, the role of such pathways in pancreatic endocrine secretions has received less attention. The secretion of insulin and glucagon in response to protein and amino acids is conserved across species. This effect is thought to promote amino acid uptake into tissues without concomitant hypoglycaemia. We found that the essential amino acid L-Phenylalanine potently stimulates glucagon secretion, even when administered directly into the gut at small doses unlikely to significantly raise systematic levels. Administration of L-Phenylalanine also increased neuronal activation in the rat and mouse dorsal vagal complex, the central nervous system region directly innervated by vagal afferents. L-Phenylalanine modulates the activity of the calcium sensing receptor (CaSR), a nutrient sensor more commonly known for its role in calcium homeostasis, but which is thought to also act as a sensor of aromatic amino acids. Interestingly, the CaSR is one of the few nutrient sensors expressed in vagal afferents and in vitro calcium imaging revealed CaSR synthetic agonists activate subpopulations of vagal afferents. The role of CaSR in vivo was investigated further by selectively knocking down the CaSR in vagal afferents. Briefly, CaSR floxed mice were bilaterally injected directly into the nodose ganglion, where the cell bodies of vagal afferents are located, with a cre expressing adeno-associated virus. CaSR knockdown did not interfere with normal food intake, nor the vagal-dependent anorectic effects of cholecystokinin, or of L-Phenylalanine. However, it did blunt protein-induced glucagon secretion, suggesting involvement of the CaSR in the vagus nerve in protein sensing and glucose homeostasis. Future studies are required to determine the importance of vagal CaSR in protein induced pancreatic endocrine secretions, and the possibility of exploiting this circuit to develop new anti-diabetic therapies.

1978 ◽  
Vol 174 (3) ◽  
pp. 931-938 ◽  
Author(s):  
C J Kelly ◽  
T C Johnson

The phenylalanine analogues p-chlorophenylalanine and alpha-methylphenylalanine were used to inhibit phenylalanine hydroxylase in animal models for phenylketonuria. The present report examines the affects of these analogues on the metabolism of neuroblastoma cells. p-Chlorophenylalanine inhibited growth and was toxic to neuroblastoma cells. Although in vivo this analogue increased cell monoribosomes by 42%, it did not significantly affect poly(U)-directed protein synthesis in vitro. P-Chlorophenylalanine did not compete with phenylalanine or tyrosine for aminoacylation of tRNA and was therefore not substituted for those amino acids in nascent polypeptides. The initial cellular uptake of various large neutral amino acids was inhibited by this analogue but did not affect the flux of amino acids already in the cell; this suggested that an alteration of the cell's amino acid pools was not responsible for the cytotoxicity of the analogues. In contrast with p-chlorophenylalanine, alpha-methylphenylalanine did not exert these direct toxic effects because the administration of alpha-methylphenylalanine in vivo did not affect brain polyribosomes and a comparable concentration of this analogue was neither growth inhibitory nor cytotoxic to neuroblastoma cells in culture. The suitability of each analogue as an inhibitor of phenylalanine hydroxylase in animal models for phenylketonuria is discussed.


1980 ◽  
Vol 35 (1-2) ◽  
pp. 72-75 ◽  
Author(s):  
Qamar Khalid ◽  
M. Ataur Rahman

Abstract The mutual enhancement of the effect of insulin release by glucose and amino acids is not clearly understood. Present in vitro studies with isolated rat islets were undertaken to elaborate the role of amino acids on insulin release, particularly their interaction with glucose as well as among each other, which has been reported to lead to synergism in the hum an subjects.In the presence of 8.3 mм glucose, both arginine, as well as, leucine potentiated the effect of glucose which increased progressively with the increasing concentrations of the amino acid. This effect of arginine was not synergistic in nature because arginine did not stimulate insulin release in the absence of glucose.The effect of glucose and leucine was found to be additive and not synergistic.No synergism was exhibited by any of the amino acid pairs tested in the present study. Thus both phenylalanine and lysine did not potentiate the effect of either arginine or leucine. Arginine showed a mild, but significant potentiating effect on leucine-stimulated insulin release.It is suggested that synergism between glucose and amino acids and between certain amino acid pairs reported in m an may not be due to the direct effects of these stimuli on the beta cells, but some other factors in vivo may be involved.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


2017 ◽  
Vol 117 (07) ◽  
pp. 1402-1411 ◽  
Author(s):  
Laura Beth Mann Dosier ◽  
Vikram J. Premkumar ◽  
Hongmei Zhu ◽  
Izzet Akosman ◽  
Michael F. Wempe ◽  
...  

SummaryThe system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.


2021 ◽  
Author(s):  
Babu Sudhamalla ◽  
Anirban Roy ◽  
Soumen Barman ◽  
Jyotirmayee Padhan

The site-specific installation of light-activable crosslinker unnatural amino acids offers a powerful approach to trap transient protein-protein interactions both in vitro and in vivo. Herein, we engineer a bromodomain to...


2004 ◽  
Vol 377 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Stéphanie MOUHAT ◽  
Amor MOSBAH ◽  
Violeta VISAN ◽  
Heike WULFF ◽  
Muriel DELEPIERRE ◽  
...  

Pi1 is a 35-residue scorpion toxin cross-linked by four disulphide bridges that acts potently on both small-conductance Ca2+-activated (SK) and voltage-gated (Kv) K+ channel subtypes. Two approaches were used to investigate the relative contribution of the Pi1 functional dyad (Tyr-33 and Lys-24) to the toxin action: (i) the chemical synthesis of a [A24,A33]-Pi1 analogue, lacking the functional dyad, and (ii) the production of a Pi1 analogue that is phosphorylated on Tyr-33 (P-Pi1). According to molecular modelling, this phosphorylation is expected to selectively impact the two amino acid residues belonging to the functional dyad without altering the nature and three-dimensional positioning of other residues. P-Pi1 was directly produced by peptide synthesis to rule out any possibility of trace contamination by the unphosphorylated product. Both Pi1 analogues were compared with synthetic Pi1 for bioactivity. In vivo, [A24,A33]-Pi1 and P-Pi1 are lethal by intracerebroventricular injection in mice (LD50 values of 100 and 40 µg/mouse, respectively). In vitro, [A24,A33]-Pi1 and P-Pi1 compete with 125I-apamin for binding to SK channels of rat brain synaptosomes (IC50 values of 30 and 10 nM, respectively) and block rat voltage-gated Kv1.2 channels expressed in Xenopus laevis oocytes (IC50 values of 22 µM and 75 nM, respectively), whereas they are inactive on Kv1.1 or Kv1.3 channels at micromolar concentrations. Therefore, although both analogues are less active than Pi1 both in vivo and in vitro, the integrity of the Pi1 functional dyad does not appear to be a prerequisite for the recognition and binding of the toxin to the Kv1.2 channels, thereby highlighting the crucial role of other toxin residues with regard to Pi1 action on these channels. The computed simulations detailing the docking of Pi1 peptides on to the Kv1.2 channels support an unexpected key role of specific basic amino acid residues, which form a basic ring (Arg-5, Arg-12, Arg-28 and Lys-31 residues), in toxin binding.


1999 ◽  
Vol 277 (2) ◽  
pp. F204-F210 ◽  
Author(s):  
Olga H. Brokl ◽  
William H. Dantzler

Amino acids are apparently recycled between loops of Henle and vasa recta in the rat papilla in vivo. To examine more closely papillary amino acid transport, we measured transepithelial fluxes ofl-[14C]alanine and [14C]taurine in thin limbs of Henle’s loops isolated from rat papilla and perfused in vitro. In descending thin limbs (DTL) in vitro, unidirectional bath-to-lumen fluxes tended to exceed unidirectional lumen-to-bath fluxes for both radiolabeled amino acids, although the difference was statistically significant only for taurine. In ascending thin limbs (ATL) in vitro, unidirectional lumen-to-bath fluxes tended to exceed unidirectional bath-to-lumen fluxes, although the difference was again statistically significant only for taurine. These results are compatible with apparent directional movements of amino acids in vivo. However, none of the unidirectional fluxes was saturable or inhibitable, an observation compatible with apparent reabsorption from the ATL in vivo but not compatible with apparent movement from vasa recta to DTL in vivo. There was no evidence of net active transepithelial transport when concentrations of radiolabeled amino acids were matched on both sides of perfused tubule segments. These data suggest that regulation of amino acid movement in vivo may involve the vasa recta, not the DTL of Henle’s loops. The data also suggest that transepithelial movement of amino acids in thin limbs of Henle’s loop may occur via a paracellular route.


Sign in / Sign up

Export Citation Format

Share Document