scholarly journals SAT-LB101 Loss of GLP-2R Signaling Activates Hepatic Stellate Cells and Exacerbates Diet-Induced Steatohepatitis in Mice

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Shai Z Fuchs ◽  
Bernardo Yusta ◽  
Laurie Baggio ◽  
Elodie Varin ◽  
Dianne Matthews ◽  
...  

Abstract A GLP-2 analogue is used in individuals with intestinal failure at risk for liver disease, yet the hepatic actions of GLP-2 are not understood. Treatment of high fat diet (HFD)-fed mice with GLP-2 did not modify the development of hepatosteatosis or hepatic inflammation. In contrast, Glp2r-/- mice exhibited increased hepatic lipid accumulation, deterioration in glucose tolerance, and upregulation of biomarkers of hepatic inflammation. Both mouse and human liver expressed the canonical GLP-2R, and hepatic Glp2r expression was upregulated in mice with hepatosteatosis. Cell fractionation localized the Glp2r to hepatic stellate cells (HSC), and markers of HSC activation and fibrosis were increased in livers from Glp2r-/- mice. Moreover, GLP-2 directly modulated gene expression in isolated HSCs ex vivo. Taken together, these findings define an essential role for the GLP-2R in hepatic adaptation to nutrient excess and unveil a gut hormone-HSC axis, linking GLP-2R signaling to control of hepatic stellate cell activation.

1998 ◽  
Vol 275 (4) ◽  
pp. G847-G853 ◽  
Author(s):  
Jacquelyn J. Maher ◽  
John S. Lozier ◽  
Myron K. Scott

Hepatic stellate cells are widely recognized for their contribution to liver fibrosis. This study investigated whether these cells also promote hepatic inflammation by producing neutrophil chemoattractants. Specifically, stellate cells were examined as potential sources of cytokine-induced neutrophil chemoattractant (CINC), a rat chemokine resembling human interleukin-8. Stellate cells from normal rat liver expressed little or no CINC. In culture, CINC mRNA was induced rapidly, coinciding with the phenomenon of culture activation. CINC mRNA rose 4.6-fold within 3 days and was accompanied by secretion of immunoreactive and biologically active CINC protein (4.1 ng ⋅ μg DNA−1⋅ day−1). Studies in vivo demonstrated that CINC could be induced in stellate cells during liver injury. CINC mRNA rose significantly (4- to 6-fold) in two models of liver disease, both of which cause stellate cell activation. In summary, the data indicate that CINC is induced during stellate cell activation in culture and in vivo. They suggest that stellate cell-derived CINC can promote hepatic inflammation in vivo.


2001 ◽  
Vol 276 (50) ◽  
pp. 47744
Author(s):  
Norifumi Kawada ◽  
Dan Bach Kristensen ◽  
Kinji Asahina ◽  
Kazuki Nakatani ◽  
Yukiko Minamiyama ◽  
...  

2008 ◽  
Vol 19 (10) ◽  
pp. 4238-4248 ◽  
Author(s):  
Gunter Maubach ◽  
Michelle Chin Chia Lim ◽  
Lang Zhuo

Activation of hepatic stellate cells during liver fibrosis is a major event facilitating an increase in extracellular matrix deposition. The up-regulation of smooth muscle α-actin and collagen type I is indicative of the activation process. The involvement of cysteine cathepsins, a class of lysosomal cysteine proteases, has not been studied in conjunction with the activation process of hepatic stellate cells. Here we report a nuclear cysteine protease activity partially attributed to cathepsin F, which co-localizes with nuclear speckles. This activity can be regulated by treatment with retinol/palmitic acid, known to reduce the hepatic stellate cell activation. The treatment for 48 h leads to a decrease in activity, which is coupled to an increase in cystatin B and C transcripts. Cystatin B knockdown experiments during the same treatment confirm the regulation of the nuclear activity by cystatin B. We demonstrate further that the inhibition of the nuclear activity by E-64d, a cysteine protease inhibitor, results in a differential regulation of smooth muscle α-actin and collagen type I transcripts. On the other hand, cathepsin F small interfering RNA transfection leads to a decrease in nuclear activity and a transcriptional down-regulation of both activation markers. These findings indicate a possible link between nuclear cathepsin F activity and the transcriptional regulation of hepatic stellate cell activation markers.


2021 ◽  
Vol 21 ◽  
Author(s):  
Fahim Rejanur Tasin ◽  
Debasish Halder ◽  
Chanchal Mandal

: Liver fibrosis is one of the leading causes for cirrhotic liver disease and the lack of therapies to treat fibrotic liver is a major concern. Liver fibrosis is mainly occurred by activation of hepatic stellate cells and some stem cell therapies had previously reported for treatment. However, due to some problems with cell-based treatment, a safe therapeutic agent is vehemently sought by the researchers. Extracellular vesicles are cell-derived nanoparticles that are employed in several therapeutic approaches, including fibrosis, for their ability to transfer specific molecules in the target cells. In this review the possibilities of extracellular vesicles to inactivate stellate cells are summarized and discussed. According to several studies, extracellular vesicles from different sources can either put beneficial or detrimental effects by regulating the activation of stellate cells. Therefore, targeting extracellular vesicles for maximizing or inhibiting their production is a potential approach for fibrotic liver treatment. Extracellular vesicles from different cells can also inactivate stellate cells by carrying out the paracrine effects of those cells, working as the agents. They are also implicated as smart carrier of anti-fibrotic molecules when their respective parent cells are engineered to produce specific stellate cell-regulating substances. A number of studies showed stellate cell activation can be regulated by up/downregulation of specific proteins, and extracellular vesicle-based therapies can be an effective move to exploit these mechanisms. In conclusion, EVs are advantageous nano-carriers with the potential to treat fibrotic liver by inactivating activated stellate cells by various mechanisms.


2021 ◽  
Author(s):  
Peng Qi ◽  
Ming-Ze Ma ◽  
Jing-Hua Kuai

Abstract Aim:To elucidate the inhibitory role of growth differentiation factor 15 (GDF15) in liver fibrosis and its possible activation mechanism in hepatic stellate cells of mice.Methods:We generated a GDF15-neutralizing antibody that can inhibit TGF-β1-induced activation of the TGF-β/Smad2/3 pathway in LX-2 cells. All the mice in this study were induced by carbon tetrachloride and thioacetamide. In addition, primary hepatic stellate cells from mice were isolated from fresh livers using Nycodenz density gradient separation. The severity and extent of liver fibrosis in mice were evaluated by Sirius Red and Masson staining. The effect of GDF15 on the activation of the TGF-β pathway was detected using dual-luciferase reporter assays and Western blotting assays.Results:The expression of GDF15 in cirrhotic liver tissue was higher than that in normal liver tissue. Blocking GDF15 with a neutralizing antibody resulted in a delay in primary hepatic stellate cell activation and remission of liver fibrosis induced by carbon tetrachloride or thioacetamide. Meanwhile, TGF-β pathway activation was partly inhibited by a GDF15-neutralizing antibody in primary hepatic stellate cells. These results indicated that GDF15 plays an important role in regulating HSC activation and liver fibrosis progression.Conclusions:The inhibition of GDF15 attenuates chemical-inducible liver fibrosis and delays hepatic stellate cell activation, and this effect is probably mainly attributed to its regulatory role in TGF-β signalling.


2019 ◽  
Vol 10 (4) ◽  
pp. 1974-1984 ◽  
Author(s):  
Monique de Barros Elias ◽  
Felipe Leite Oliveira ◽  
Fatima Costa Rodrigues Guma ◽  
Renata Brum Martucci ◽  
Radovan Borojevic ◽  
...  

Hepatic stellate cells are liver-specific perivascular cells, identified as the major source of collagen in liver fibrosis, following their activation and conversion to myofibroblast-like cells.


2020 ◽  
Author(s):  
Eugene Joeh ◽  
Timothy O’Leary ◽  
Weichao Li ◽  
Richard Hawkins ◽  
Jonathan R. Hung ◽  
...  

AbstractGalectin-3 is a glycan-binding protein (GBP) that binds β-galactoside glycan structures to orchestrate a variety of important biological events, including the activation of hepatic stellate cells to cause hepatic fibrosis. While the requisite glycan epitopes needed to bind galectin-3 have long been elucidated, the cellular glycoproteins that bear these glycan signatures remain unknown. Given the importance of the three-dimensional arrangement of glycans in dictating GBP interactions, strategies that allow the identification of GBP receptors in live cells, where the native glycan presentation and glycoprotein expression are preserved, possess significant advantages over static and artificial systems. Here, we describe the integration of a proximity labeling method and quantitative mass spectrometry to map the glycan and glycoprotein interactors for galectin-3 in live hepatic stellate cells. Understanding the identity of the glycoproteins and defining the structures of the glycans required for galectin-3 mediated hepatic stellate cell activation will empower efforts to design and develop selective therapeutics to mitigate hepatic fibrosis.SignificanceBecause of the weak interactions between individual glycan-binding proteins (GBP), such as galectin-3, and glycans, strategies that allow the direct interrogation of these interactions in living cells remain limited. Thus, the glycan and glycoprotein ligands that are physiologically relevant for galectin-3 binding are insufficiently described. Here, we used a proximity labeling approach that catalytically tags interactors for galectin-3 and identified its pertinent glycan and glycoprotein counter-receptors in live hepatic stellate cells. This study demonstrates that proximity labeling is a powerful tool for mapping GBP complexes in living cells, and when coupled with chemical inhibitors, it can discriminate between protein-protein and protein-glycan interactions.Graphical Abstract


2000 ◽  
Vol 278 (2) ◽  
pp. G321-G328 ◽  
Author(s):  
Martina Buck ◽  
Dong Joon Kim ◽  
Karl Houglum ◽  
Tarek Hassanein ◽  
Mario Chojkier

Expression of α-smooth muscle actin (α-SMA) defines the phenotype of activated (myofibroblastic) hepatic stellate cells. These cells, but not quiescent stellate cells, have a high level of α-SMA and c-Myb expression, as well as increased c-Myb-binding activities to the proximal α-SMA E box. Therefore, we analyzed the role of c-Myb in α-SMA transcription and stellate cell activation. Activated primary rat stellate cells displayed a high expression of the −724 and −271 α-SMA/luciferase (LUC) chimeric genes, which contain c-Myb binding sites (−223/−216 bp). α-SMA/LUC minigenes with mutation (−219/−217 bp), truncation (−224 bp), or deletion (−191 bp) of the c-Myb binding site were not efficiently transcribed. Transfection of wild-type c-Myb into quiescent stellate cells, which do not express endogenous c-Myb, induced a ∼10-fold stimulation of −724 α-SMA/LUC expression. Conversely, expression of either a dominant-negative c-Myb basic domain mutant (Cys43 → Asp) or a c-Myb antisense RNA blocked transcription from the −724 α-SMA/LUC or −271 α-SMA/LUC in activated cells. Moreover, transfection of c- myb antisense, but not sense, RNA inhibited both expression of the endogenous α-SMA gene and stellate cell activation, whereas transfection of c- myb stimulated α-SMA expression in quiescent stellate cells. These findings suggest that c-Myb modulates the activation of stellate cells and that integrity of the redox sensor Cys43in c-Myb is required for this effect.


Hepatology ◽  
2009 ◽  
Vol 49 (6) ◽  
pp. 2055-2067 ◽  
Author(s):  
Feng Hong ◽  
Ana Tuyama ◽  
Ting Fang Lee ◽  
Johnny Loke ◽  
Ritu Agarwal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document