c-Myb modulates transcription of the α-smooth muscle actin gene in activated hepatic stellate cells
Expression of α-smooth muscle actin (α-SMA) defines the phenotype of activated (myofibroblastic) hepatic stellate cells. These cells, but not quiescent stellate cells, have a high level of α-SMA and c-Myb expression, as well as increased c-Myb-binding activities to the proximal α-SMA E box. Therefore, we analyzed the role of c-Myb in α-SMA transcription and stellate cell activation. Activated primary rat stellate cells displayed a high expression of the −724 and −271 α-SMA/luciferase (LUC) chimeric genes, which contain c-Myb binding sites (−223/−216 bp). α-SMA/LUC minigenes with mutation (−219/−217 bp), truncation (−224 bp), or deletion (−191 bp) of the c-Myb binding site were not efficiently transcribed. Transfection of wild-type c-Myb into quiescent stellate cells, which do not express endogenous c-Myb, induced a ∼10-fold stimulation of −724 α-SMA/LUC expression. Conversely, expression of either a dominant-negative c-Myb basic domain mutant (Cys43 → Asp) or a c-Myb antisense RNA blocked transcription from the −724 α-SMA/LUC or −271 α-SMA/LUC in activated cells. Moreover, transfection of c- myb antisense, but not sense, RNA inhibited both expression of the endogenous α-SMA gene and stellate cell activation, whereas transfection of c- myb stimulated α-SMA expression in quiescent stellate cells. These findings suggest that c-Myb modulates the activation of stellate cells and that integrity of the redox sensor Cys43in c-Myb is required for this effect.