scholarly journals Taking Advantage of the TGFB1 Biology in Differentiated Thyroid Cancer to Stimulate Sodium Iodide Symporter (NIS)-Mediated Iodide Uptake in Engineered Mesenchymal Stem Cells

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1033-A1033
Author(s):  
Yang Han ◽  
Viktoria F Koehler ◽  
Nathalie Schwenk ◽  
Kathrin A Schmohl ◽  
Rebekka Spellerberg ◽  
...  

Abstract The sodium iodide symporter (NIS) mediates the active transport of iodide into thyroid follicular cells, providing the basis for the use of radioiodide for diagnostic imaging and therapy of differentiated thyroid cancer and also non-thyroidal tumors after tumor-selective NIS gene transfer. Based on their excellent tumor-homing capacity, mesenchymal stem cells (MSCs) can be employed as tumor-selective NIS gene delivery vehicles. Transgenic expression of NIS in genetically engineered MSCs allows noninvasive imaging of functional NIS expression as well as therapeutic application of 131I. The use of promoters activated by tumor micromilieu-derived signals to drive NIS expression enhances selectivity and effectiveness, while limiting potential off-target effects. In this study we aimed to exploit the central role of transforming growth factor B1 (TGFB1) in tumor milieu-associated signaling using a TGFB1-inducible synthetic SMAD-responsive promoter to selectively drive NIS-transgene expression in engineered MSCs (SMAD-NIS-MSC) in the context of differentiated thyroid cancer based on the critical role of TGFB1 in the pathogenesis of radioiodine refractory differentiated thyroid cancer. To evaluate the TGFB1 expression in thyroid cancer cell lines, the TGFB1 concentration in conditioned medium (CM) from an array of established human papillary thyroid cancer (PTC) cell lines (BCPAP and K1) was measured by ELISA. BCPAP-CM showed a higher concentration of TGFB1, while a lower concentration was measured in K1-CM. Stimulation of SMAD-NIS-MSCs with PTC-CM showed a significant increase of NIS-mediated radioiodide-125 uptake in these MSCs in vitro. In addition, iodide uptake in SMAD-NIS-MSCs was significantly stimulated by co-culture with thyroid cancer cells. Cell migration assay was performed to validate the effect of PTC-CM in MSC recruitment. MSCs subjected to a gradient between tumor CM and serum free medium showed a directed chemotaxis towards CM with increased forward migration index (FMI) and center of mass (CoM). In a next step, based on the in vitro studies, SMAD-NIS-MSCs will be systemically applied via the tail vein to mice harboring subcutaneous PTC tumors and tumoral iodide uptake will be monitored by 123I-scintigraphy. Taken together, these data indicate the feasibility of commandeering TGF-β/SMAD signaling in the TGFB1-rich tumor environments of radioiodine refractory differentiated thyroid carcinomas to re-establish functional NIS expression using engineered mesenchymal stem cells as therapy vehicles.

2006 ◽  
Vol 13 (3) ◽  
pp. 797-826 ◽  
Author(s):  
T Kogai ◽  
K Taki ◽  
G A Brent

The sodium/iodide symporter (NIS) mediates iodide uptake in the thyroid gland and lactating breast. NIS mRNA and protein expression are detected in most thyroid cancer specimens, although functional iodide uptake is usually reduced resulting in the characteristic finding of a ‘cold’ or non-functioning lesion on a radioiodine image. Iodide uptake after thyroid stimulating hormone (TSH) stimulation, however, is sufficient in most differentiated thyroid cancer to utilize β-emitting radioactive iodide for the treatment of residual and metastatic disease. Elevated serum TSH, achieved by thyroid hormone withdrawal in athyreotic patients or after recombinant human thyrotropin administration, directly stimulates NIS gene expression and/or NIS trafficking to the plasma membrane, increasing radioiodide uptake. Approximately 10–20% differentiated thyroid cancers, however, do not express the NIS gene despite TSH stimulation. These tumors are generally associated with a poor prognosis. Reduced NIS gene expression in thyroid cancer is likely due in part, to impaired trans-activation at the proximal promoter and/or the upstream enhancer. Basal NIS gene expression is detected in about 80% breast cancer specimens, but the fraction with functional iodide transport is relatively low. Lactogenic hormones and various nuclear hormone receptor ligands increase iodide uptake in breast cancer cells in vitro, but TSH has no effect. A wide range of ‘differentiation’ agents have been utilized to stimulate NIS expression in thyroid and breast cancer using in vitro and in vivo models, and a few have been used in clinical studies. Retinoic acid has been used to stimulate NIS expression in both thyroid and breast cancer. There are similarities and differences in NIS gene regulation and expression in thyroid and breast cancer. The various agents used to enhance NIS expression in thyroid and breast cancer will be reviewed with a focus on the mechanism of action. Agents that promote tumor differentiation, or directly stimulate NIS gene expression, may result in iodine concentration in ‘scan-negative’ thyroid cancer and some breast cancer.


Endocrinology ◽  
2003 ◽  
Vol 144 (8) ◽  
pp. 3423-3432 ◽  
Author(s):  
C. Spitzweg ◽  
I. V. Scholz ◽  
E. R. Bergert ◽  
D. J. Tindall ◽  
C. Y. F. Young ◽  
...  

Abstract We reported recently the induction of androgen-dependent iodide uptake activity in the human prostatic adenocarcinoma cell line LNCaP using a prostate-specific antigen (PSA) promoter-directed expression of the sodium iodide symporter (NIS) gene. This offers the potential to treat prostate cancer with radioiodine. In the current study, we examined the regulation of PSA promoter-directed NIS expression and therapeutic effectiveness of 131I in LNCaP cells by all-trans-retinoic acid (atRA). For this purpose, NIS mRNA and protein expression levels in the NIS-transfected LNCaP cell line NP-1 were examined by Northern and Western blot analysis following incubation with atRA (10 −9 to 10−6m) in the presence of 10−9m mibolerone (mib). In addition, NIS functional activity was measured by iodide uptake assay, and in vitro cytotoxicity of 131I was examined by in vitro clonogenic assay. Following incubation with atRA, NIS mRNA levels in NP-1 cells were stimulated 3-fold in a concentration-dependent manner, whereas NIS protein levels increased 2.3-fold and iodide accumulation was stimulated 1.45-fold. This stimulatory effect of atRA, which has been shown to be retinoic acid receptor mediated, was completely blocked by the pure androgen receptor antagonist casodex (10−6m), indicating that it is androgen receptor dependent. The selective killing effect of 131I in NP-1 cells was 50% in NP-1 cells incubated with 10−9m mib. This was increased to 90% in NP-1 cells treated with atRA (10−7m) plus 10−9m mib. In conclusion, treatment with atRA increases NIS expression levels and selective killing effect of 131I in prostate cancer cells stably expressing NIS under the control of the PSA promoter. Therefore atRA may be used to enhance the therapeutic response to radioiodine in prostate cancer cells following PSA promoter-directed NIS gene delivery.


2012 ◽  
Vol 9 (6) ◽  
pp. 304-310 ◽  
Author(s):  
Min Hwan Kim ◽  
Yong Jin Lee ◽  
Kwang Il Kim ◽  
Tae Sup Lee ◽  
Kwang Sun Woo ◽  
...  

1999 ◽  
pp. 443-457 ◽  
Author(s):  
S Filetti ◽  
JM Bidart ◽  
F Arturi ◽  
B Caillou ◽  
D Russo ◽  
...  

The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.


Gene ◽  
2015 ◽  
Vol 572 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Maha M. Al-Rasheed ◽  
Ali S. Alzahrani ◽  
Angela Macadam ◽  
Andrew Overall ◽  
Paul Gard ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Shasha Hou ◽  
Xiaorui Xie ◽  
Jing Zhao ◽  
Cailan Wu ◽  
Ning Li ◽  
...  

The dedifferentiation of differentiated thyroid cancer (DTC) is a challenging problem for radioactive iodine (131I) treatment, also known as radioiodine refractory differentiated thyroid cancer (RAIR-DTC). The purpose of this study was to further explore the mechanism of the redifferentiation of dedifferentiated thyroid cancer. Ineffective and effective groups of 131I therapy were analyzed and compared in both our clinical and TCGA samples. Whole-exome sequencing, mutation analysis, transcriptome analysis, and in vitro functional experiments were conducted. FLG, FRG1, MUC6, MUC20, and PRUNE2 were overlapping mutation genes between our clinical cases, and the TCGA cases only appeared in the ineffective group. The expression of miR-146b-3p target MUC20 was explored. The expression levels of miR-146b-3p and MUC20 were significantly increased, and the inhibition of miR-146b-3p expression significantly inhibited proliferation and migration, promoted apoptosis, regulated the expression and location of thyroid differentiation-related genes, and sodium/iodide symporter (NIS) in dedifferentiated thyroid cancer cells (WRO). Thus, miR-146b-3p potentially targets MUC20 participation in the formation of DTC dedifferentiation, resulting in resistance to 131I and the loss of the iodine uptake ability of DTC cancer foci, promoting refractory differentiated thyroid cancer. miR-146b-3p may be a potentially therapeutic target for the reapplication of 131I therapy in dedifferentiated thyroid cancer patients.


2014 ◽  
Vol 28 (7) ◽  
pp. 623-631 ◽  
Author(s):  
Nilufer Yildirim-Poyraz ◽  
Aylin Yazgan ◽  
Elif Ozdemir ◽  
Aysegul Gozalan ◽  
Mutlay Keskin ◽  
...  

2011 ◽  
Vol 210 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Vicki E Smith ◽  
Jayne A Franklyn ◽  
Christopher J McCabe

Pituitary tumor-transforming gene (PTTG)-binding factor (PBF; PTTG1IP) was initially identified through its interaction with the human securin, PTTG. Like PTTG, PBF is upregulated in multiple endocrine tumours including thyroid cancer. PBF is believed to induce the translocation of PTTG into the cell nucleus where it can drive tumourigenesis via a number of different mechanisms. However, an independent transforming ability has been demonstrated both in vitro and in vivo, suggesting that PBF is itself a proto-oncogene. Studied in only a limited number of publications to date, PBF is emerging as a protein with a growing repertoire of roles. Recent data suggest that PBF possesses a complex multifunctionality in an increasing number of tumour settings. For example, PBF is upregulated by oestrogen and mediates oestrogen-stimulated cell invasion in breast cancer cells. In addition to a possible role in the induction of thyroid tumourigenesis, PBF overexpression in thyroid cancers inhibits iodide uptake. PBF has been shown to repress sodium iodide symporter (NIS) activity by transcriptional regulation of NIS expression through the human NIS upstream enhancer and further inhibits iodide uptake via a post-translational mechanism of NIS governing subcellular localisation. This review discusses the current data describing PBF expression and function in thyroid cancer and highlights PBF as a novel target for improving radioiodine uptake and thus prognosis in thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document