scholarly journals OR08-4 A Novel Mutation in the Follicle-Stimulating Hormone Receptor (Ile423Thr) in a Woman with Normal Pubertal Development and Primary Amenorrhea: In Vivo, In Vitro, and In Silico Studies

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Julio Mayorga ◽  
Teresa Zariñán ◽  
Eduardo Jardón-Valadez ◽  
Rubén Gutiérrez-Sagal ◽  
Eric Reiter ◽  
...  
2008 ◽  
Vol 24 (12) ◽  
pp. 708-712 ◽  
Author(s):  
Yasuhiko Nakamura ◽  
Ryo Maekawa ◽  
Yoshiaki Yamagata ◽  
Isao Tamura ◽  
Norihiro Sugino

Author(s):  
Pooja Chauhan ◽  
Anjali Rani ◽  
Amit Kumar Rai

Background: Inhibin and activin regulate the follicle stimulating hormone level by their antagonistic actions and thus have been considered as strong candidate genes in the etiology of ovarian dysgenesis. In the present study, two cases of primary amenorrhea with poorly developed secondary sexual characteristics were reported. The purpose of the study was to identify mutations in candidate gene. Case Presentation: In this paper, clinical, genetic, biochemical, and molecular findings in female patients with primary amenorrhea were reported. Whole blood culture and G-banding for karyotyping, sequencing, and in silico analysis were performed following the standard protocol. Both cases were cytogenetically characterized as normal females with 46,XX, chromosome constitution. Hormonal assay revealed high level of follicle stimulating hormone and luteinizing hormone. DNA sequence analysis of inhibin identified two novel heterozygous missense mutations of c.975T>A and c.1156G>A which were translated into p.I310N and p.D386N, respectively. These identified positions were highly conserved across species during evolution. In silico prediction tools, intramolecular hydrogen bonding pattern and hydrophobicity analysis, revealed deleterious effect of p.I310N and neutral effect of p.D386N mutation. Conclusion: Our observation suggested that identified novel mutation in the first case might be the reason for ovarian dysgenesis and provides additional support to the previously reported genotype-phenotype correlations.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110166
Author(s):  
Xin Yi Lim ◽  
Janice Sue Wen Chan ◽  
Terence Yew Chin Tan ◽  
Bee Ping Teh ◽  
Mohd Ridzuan Mohd Abd Razak ◽  
...  

Drug repurposing is commonly employed in the search for potential therapeutic agents. Andrographis paniculata, a medicinal plant commonly used for symptomatic relief of the common cold, and its phytoconstituent andrographolide, have been repeatedly identified as potential antivirals against SARS-CoV-2. In light of new evidence emerging since the onset of the COVID-19 pandemic, this rapid review was conducted to identify and evaluate the current SARS-CoV-2 antiviral evidence for A. paniculata, andrographolide, and andrographolide analogs. A systematic search and screen strategy of electronic databases and gray literature was undertaken to identify relevant primary articles. One target-based in vitro study reported the 3CLpro inhibitory activity of andrographolide as being no better than disulfiram. Another Vero cell-based study reported potential SARS-CoV-2 inhibitory activity for both andrographolide and A. paniculata extract. Eleven in silico studies predicted the binding of andrographolide and its analogs to several key antiviral targets of SARS-CoV-2 including the spike protein-ACE-2 receptor complex, spike protein, ACE-2 receptor, RdRp, 3CLpro, PLpro, and N-protein RNA-binding domain. In conclusion, in silico and in vitro studies collectively suggest multi-pathway targeting SARS-CoV-2 antiviral properties of andrographolide and its analogs, but in vivo data are needed to support these predictions.


Sign in / Sign up

Export Citation Format

Share Document