scholarly journals Androgen-Induced Rhox Homeobox Genes Modulate the Expression of AR-Regulated Genes

2010 ◽  
Vol 24 (1) ◽  
pp. 60-75 ◽  
Author(s):  
Zhiying Hu ◽  
Dineshkumar Dandekar ◽  
Peter J. O'Shaughnessy ◽  
Karel De Gendt ◽  
Guido Verhoeven ◽  
...  

Abstract Rhox5, the founding member of the reproductive homeobox on the X chromosome (Rhox) gene cluster, encodes a homeodomain-containing transcription factor that is selectively expressed in Sertoli cells, where it promotes the survival of male germ cells. To identify Rhox5-regulated genes, we generated 15P-1 Sertoli cell clones expressing physiological levels of Rhox5 from a stably transfected expression vector. Microarray analysis identified many genes altered in expression in response to Rhox5, including those encoding proteins controlling cell cycle regulation, apoptosis, metabolism, and cell-cell interactions. Fifteen of these Rhox5-regulated genes were chosen for further analysis. Analysis of Rhox5-null male mice indicated that at least nine of these are Rhox5-regulated in the testes in vivo. Many of them have distinct postnatal expression patterns and are regulated by Rhox5 at different postnatal time points. Most of them are expressed in Sertoli cells, indicating that they are candidates to be directly regulated by Rhox5. Transfection analysis with expression vectors encoding different mouse and human Rhox family members revealed that the regulatory response of a subset of these Rhox5-regulated genes is both conserved and redundant. Given that Rhox5 depends on androgen receptor (AR) for expression in Sertoli cells, we examined whether some Rhox5-regulated genes are also regulated by AR. We provide several lines of evidence that this is the case, leading us to propose that RHOX5 serves as a key intermediate transcription factor that directs some of the actions of AR in the testes.

Science ◽  
1996 ◽  
Vol 271 (5255) ◽  
pp. 1595-1597 ◽  
Author(s):  
J. Zwicker ◽  
N. Liu ◽  
K. Engeland ◽  
F. C. Lucibello ◽  
R. Muller

Cancer Cell ◽  
2018 ◽  
Vol 34 (4) ◽  
pp. 626-642.e8 ◽  
Author(s):  
Natalia Martinez-Soria ◽  
Lynsey McKenzie ◽  
Julia Draper ◽  
Anetta Ptasinska ◽  
Hasan Issa ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 194
Author(s):  
N. Mtango ◽  
K. Latham

After fertilization, cell division is required for development during the transition from a zygote to an embryo. Degradation of oocyte transcripts, transcriptional activation of the nucleus, and chromatin remodeling occur during early cleavage divisions. Defects in cell cycle regulation decrease the ability of embryo to grow and can be detrimental. In the rhesus monkey, embryos derived by fertilization of oocytes from prepubertal females or oocytes collected during the non-breeding season undergo cleavage arrest (Schramm and Bavister 1994; Zheng et al. 2001). We employed the Primate Embryo Gene Expression Resource (PREGER; www.Preger.org) to examine the expression pattern of 70 mRNAs involved in cell cycle regulation in rhesus monkey oocytes and embryos derived from different stimulation protocols (non-stimulated, FSH stimulated-in vitro matured, and FSH and hCG stimulated-in vivo matured; Mtango and Latham 2007, 2008; Zheng et al. 2005). The resource encompasses a large, biologically rich set of more than 170 samples with 1 to 4 oocytes or embryos which were constructed using the quantitative amplification and dot blotting method. This method entails the direct lysis of small numbers of oocytes or embryos in a reverse transcription buffer supplemented with nonionic detergent, thereby avoiding RNA losses associated with organic extractions (Brady and Iscove 1993). We find that aberrant regulation of cell cycle regulatory gene mRNAs is a prominent feature of oocytes and embryos of compromised developmental potential (FSH stimulated-moderate reduced potential and NS-severely compromised potential). Of the 56 mRNAs for which expression was detected, there was significant aberrations related to oocyte and embryo quality in the expression of more than half (n = 30), P < 0.05), 26 of 30 display significant differences in metaphase II stage oocytes, 20 being altered in FSH stimulated females and 24 of 30 being altered in NS females. The comparison between monkey and previously reported mouse array expression data (Zeng et al. 2004) revealed striking differences between 2 species. These data provide novel information about disruptions in the expression of genes controlling the cell cycle in oocytes and embryos of compromised developmental potential. We thank Bela Patel, Malgorzata McMenamin, and Ann Marie Paprocki for their technical assistance. We also thank R. Dee Schramm for his contribution to the development of the PREGER resource. This work was supported by National Centers for Research Resources Grant RR-15253.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4790-4790
Author(s):  
Paola Neri ◽  
Teresa Calimeri ◽  
Mariateresa Di Martino ◽  
Marco Rossi ◽  
Orietta Eramo ◽  
...  

Abstract Valproic acid (VPA) is a well-tolerated anticonvulsant drug that has been recently recognized as powerful histone deacetylase (HDCA) inhibitor. VPA induces hyperacetylation of histone H3 and H4 and inhibits both class I and II HDCACs. Recently it has been shown that VPA exerts in vitro and in vivo anti-tumor activity against solid cancers and its in vitro anti-Multiple Myeloma (MM) activity has been previously reported. However, the molecular mechanisms are still unclear. Here we have investigated molecular changes induced by VPA as well as its in vivo activity in murine models of MM. We first studied the in vitro activity of VPA against IL-6 independent as well as IL-6 dependent MM cells. A time- and dose-dependent decrease in proliferation and survival of MM cell lines was observed (IC50 in the range of 1–3 mM). Gene expression profile following treatment with VPA at 2 and 5 mM showed down-regulation of genes involved in cell cycle regulation, DNA replication and transcription as well as up-regulation of genes implicated in apoptosis and chemokine pathways. The signaling pathway analysis performed by Ingenuity Systems Software identified the cell growth, cell cycle, cell death as well as DNA replication and repair as the most important networks modulated by VPA treatment. We next evaluated the in vivo activity of VPA using two xenograft models of human MM. A cohort of SCID mice bearing subcutaneous MM1s or OPM1 were treated i.p. daily with VPA (200 mg/kg, and 300 mg/kg, n=5 mice, respectively), or vehicle alone (n=5 mice) for 16 consecutive days. Tumors were measured every 2 days, and survival was calculated using the Kaplan Mayer method. Following VPA treatment, we found a significant (p=0.006) inhibition of tumor growth in mice bearing subcutaneous MM-1s cells treated with VPA at 200 mg/kg compared to control group, which translated into a significant (p= 0.002) survival advantage in the VPA treated animals. Similar results were obtained in animals bearing subcutaneous OPM1 cells. Flow cytometry analysis performed on retrieved tumor tissues from animals showed reduction of G2-M and S phase in tumor specimens following VPA treatment, versus untreated tumors, strongly suggesting in vivo effects of VPA on cell cycle regulation. Taken together, our data demonstrate the in vitro and in vivo anti-tumor activity of VPA, delineate potential molecular targets triggered by this agent and provide a preclinical rationale for its clinical evaluation, both as a single agent or in combination, to improve patient outcome in MM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2519-2519
Author(s):  
Stephan Lindsey ◽  
Eleftherios Papoutsakis

Abstract Abstract 2519 Poster Board II-496 Understanding the mechanisms underlying megakaryocytic (Mk) differentiation and maturation is vital to the discovery of novel approaches to treating Mk and platelet disorders such as thrombocytopenia, megakaryoblastic leukemia, and thrombocythemia. The number of platelets released is proportional to the amount of DNA present in a given Mk, so insights into the molecular basis of Mk polyploidization could inspire improved ex vivo culturing methods to promote Mk commitment, expansion, and differentiation, leading to improved autologous transfusion protocols to offset thrombocytopenia associated with HSC transplants following high-dose chemotherapy or MDS progression. Microarray analyses on ex vivo Mk-differentiated primary human CD34+ cells showed that mRNA levels of the Aryl Hydrocarbon Receptor (AhR) increased during Mk differentiation and was elevated 4–6 fold in Mks compared to isogenic granulocytic cultures. These data were further confirmed by quantitative(Q)-RT-PCR analysis of differentiating Mks derived from primary human CD34+ cells as well as from CHRF cells (human megakaryoblastic leukemia). We have shown that CHRF cells are a valid model of human Mk differentiation (Fuhrken PG et al. Exp Hematol, 2007; 35:476–489). Thus, we hypothesized that AhR may act as a novel Mk transcription factor, possibly by influencing or regulating Mk polyploidization. Known as a “toxin sensor”, AhR is involved in the mechanism of action of environmental toxins, likely by altering cell cycle regulation. Epidemiological studies of toxic waste spills and Vietnam veterans suggest that exposure to known AhR ligands may result in increased platelet counts proportional to dioxin exposure level (Webb K et al. Am J Ind Med, 1987;11:685–691, Michalek JE Arch Environ Health, 2001; 56:396–405). These studies offer the intriguing possibility that AhR activation modulates megakaryocyte differentiation and/or platelet production. Interestingly, AhR influences the differentiation of other myeloid lineages including monocytes (Hayashi S et al. Carcinogenesis, 1995; 16:1403–1409) and is upregulated after leukocyte activation (Crawford RB et al. Mol Pharmacol, 1997; 52:921–927). Western blot analyses determined that although initially expressed in both the cytoplasm and nucleus, AhR became solely nuclear in differentiating CHRF cells. EMSA analysis using CHRF nuclear extracts demonstrated that AhR binding to a consensus binding sequence increased as megakaryopoiesis progressed (n=3). Increased AhR-DNA binding during CHRF Mk differentiation correlated with 4.6-fold increased mRNA expression of the AhR transcriptional target Hes1 (n=3, p<0.005), a known cell-cycle regulator and mediator of notch signaling. In order to examine the functional role of AhR in megakaryopoiesis, we generated 3 independent AhR knockdown (KD) CHRF cell lines. Depending on the day of culture, AhR-KD CHRF cell lines differentiated into Mk cells expressed 2-3 fold less AhR mRNA (n=3; p<0.02), 40–60% less AhR protein (n=3), 2.7 times less Hes1 mRNA (n=3; p=0.018), displayed Mk-ploidy distributions shifted towards lower ploidy classes, and were incapable of reaching higher ploidy classes (i.e., ≥32n) seen in control cells. Ploidy levels on day 7 (maximal ploidy in control cells) were 3-fold lower in AhR-KD CHRF cells (n=3; p=0.012 or p=0.005 depending on KD cell line). AhR KD resulted in increased DNA synthesis of low ploidy (<8n; n=3; p<0.05) without influencing apoptosis (n=3, p=0.37). These data suggest that AhR may regulate the cell cycle differently in Mks compared to other cell types, where loss of AhR results in cell cycle blockage and increased apoptosis. As such, AhR deregulation provides a mechanistic explanation for chemical-induced thrombocytopenia, including chemotherapy, and suggests that AhR agonists may provide novel therapies for megakaryoblastic leukemia. AhR-mediated expression of Hes1, an established regulator of the Notch signaling pathway, provides a novel molecular model of endomitotic entry and Mk polyploidization; in drosophila, Notch cell-cycle regulation controls the initial switch toward endomitosis. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 117 (14) ◽  
pp. 7837-7844
Author(s):  
Mito Kanatsu-Shinohara ◽  
Narumi Ogonuki ◽  
Shogo Matoba ◽  
Atsuo Ogura ◽  
Takashi Shinohara

The blood–testis barrier (BTB) is thought to be indispensable for spermatogenesis because it creates a special environment for meiosis and protects haploid cells from the immune system. The BTB divides the seminiferous tubules into the adluminal and basal compartments. Spermatogonial stem cells (SSCs) have a unique ability to transmigrate from the adluminal compartment to the basal compartment through the BTB upon transplantation into the seminiferous tubule. Here, we analyzed the role ofCldn11, a major component of the BTB, in spermatogenesis using spermatogonial transplantation.Cldn11-deficient mice are infertile due to the cessation of spermatogenesis at the spermatocyte stage.Cldn11-deficient SSCs failed to colonize wild-type testes efficiently, andCldn11-deficient SSCs that underwent double depletion ofCldn3andCldn5showed minimal colonization, suggesting that claudins on SSCs are necessary for transmigration. However,Cldn11-deficient Sertoli cells increased SSC homing efficiency by >3-fold, suggesting that CLDN11 in Sertoli cells inhibits transmigration of SSCs through the BTB. In contrast to endogenous SSCs in intactCldn11-deficient testes, those from WT orCldn11-deficient testes regenerated sperm inCldn11-deficient testes. The success of this autologous transplantation appears to depend on removal of endogenous germ cells for recipient preparation, which reprogrammed claudin expression patterns in Sertoli cells. Consistent with this idea, in vivo depletion ofCldn3/5regenerated endogenous spermatogenesis inCldn11-deficient mice. Thus, coordinated claudin expression in both SSCs and Sertoli cells expression is necessary for SSC homing and regeneration of spermatogenesis, and autologous stem cell transplantation can rescue congenital defects of a self-renewing tissue.


1994 ◽  
Vol 14 (12) ◽  
pp. 8322-8332
Author(s):  
R Martinelli ◽  
N Heintz

H1TF2 is a CCAAT transcription factor that binds to the histone H1 subtype-specific consensus sequence, which has previously been shown to be necessary for temporal regulation of histone H1 transcription during the cell cycle (F. La Bella, P. Gallinari, J. McKinney, and N. Heintz, Genes Dev. 3:1982-1990, 1989). In this study, we report that H1TF2 is a heteromeric CCAAT-binding protein composed of two polypeptide doublets of 33 and 34 kDa and 43 and 44 kDa that are not antigenically related. The 33- and 34-kDa species were not detected in our previous studies (P. Gallinari, F. La Bella, and N. Heintz, Mol. Cell. Biol. 9:1566-1575, 1989) because of technical problems in detection of these heavily glycosylated subunits. The cloning of H1TF2A, the large subunit of this factor, reveals it to be a glutamine-rich protein with extremely limited similarity to previously cloned CCAAT-binding proteins. A monospecific antiserum produced against bacterially synthesized H1TF2A was used to establish that HeLa cell H1TF2A is phosphorylated in vivo and that, in contrast to the H2b transcription factor Oct1 (S. B. Roberts, N. Segil, and N. Heintz, Science 253:1022-1026, 1991; N. Segil, S. B. Roberts, and N. Heintz, Cold Spring Harbor Symp. Quant. Biol. 56:285-292, 1991), no gross change in H1TF2A phosphorylation is evident during the cell cycle. Further immunoprecipitation studies demonstrated that H1TF2 is heterodimeric in the absence of DNA in vivo and identified several H1TF2-interacting proteins that may play a role in H1TF2 function in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1349-1349
Author(s):  
Emmanuelle Passegue ◽  
Amy J. Wagers ◽  
Sylvie Giuriato ◽  
Wade C. Anderson ◽  
Irving L. Weissman

Abstract The blood is a perpetually renewing tissue seeded by a rare population of adult bone marrow hematopoietic stem cells (HSC). During steady-state hematopoiesis, the HSC population is relatively quiescent but constantly maintains a low numbers of cycling cells that differentiate to produce the various lineage of mature blood cells. However, in response to hematological stress, the entire HSC population can be recruited into cycle to self-renew and regenerate the blood-forming system. HSC proliferation is therefore highly adaptative and requires appropriate regulation of cell cycle progression to drive both differentiation-associated and self-renewal-associated proliferation, without depletion of the stem cell pool. Although the molecular events controlling HSC proliferation are still poorly understood, they are likely determined, at least in part, by regulated expression and/or function of components and regulators of the cell cycle machinery. Here, we demonstrate that the long-term self-renewing HSC (defined as Lin−/c-Kit+/Sca-1+/Thy1.1int/Flk2−) exists in two distinct states that are both equally important for their in vivo functions as stem cells: a numerically dominant quiescent state, which is critical for HSC function in hematopoietic reconstitution; and a proliferative state, which represents almost a fourth of this population and is essential for HSC functions in differentiation and self-renewal. We show that when HSC exit quiescence and enter G1 as a prelude to cell division, at least two critical events occur: first, during the G1 and subsequent S-G2/M phases, they temporarily lose efficient in vivo engraftment activity, while retaining in vitro differentiation potential; and second, they select the particular cell cycle proteins that are associated with specific developmental outcomes (self-renewal vs. differentiation) and developmental fates (myeloid vs. lymphoid). Together, these findings provide a direct link between HSC proliferation, cell cycle regulation and cell fate decisions that have critical implications for both the therapeutic use of HSC and the understanding of leukemic transformation.


Sign in / Sign up

Export Citation Format

Share Document