Ventralis Intermedius plus Ventralis Oralis Anterior and Posterior Deep Brain Stimulation for Posttraumatic Holmes Tremor: Two Leads May Be Better than One: Technical Note

2005 ◽  
Vol 56 (suppl_4) ◽  
pp. ONS-E445-ONS-E445 ◽  
Author(s):  
Kelly D. Foote ◽  
Michael S. Okun

Abstract OBJECTIVE AND IMPORTANCE: To describe the effects of ventralis oralis anterior (VOA) and posterior (VOP), as well as ventralis intermedius (VIM), deep brain stimulation (two ipsilateral thalamic leads implanted) on posttraumatic Holmes tremor. Results of both thalamic lesioning and thalamic deep brain stimulation for Holmes tremor and tremors due to posttraumatic lesions in the region of the midbrain have been disappointing. In 2001, the use of two electrodes implanted in parallel for severe essential tremor was reported. We propose the use of a similar technique for posttraumatic Holmes tremor. One rationalization for the placement of two leads was to affect both the cerebellar receiving area (VIM) and the pallidal receiving area (VOA/VOP). A second rationalization was that the placement of a second electrode may affect somatotopy, and may, therefore, be beneficial for the treatment of more difficult to control tremor subtypes. CLINICAL PRESENTATION: A 24-year-old man with intractable posttraumatic Holmes tremor presented for consideration of a surgical intervention. INTERVENTION: A high-resolution, volumetric magnetic resonance imaging scan was obtained 1 day before the procedure. Microelectrode recording was used in addition to stereotactic computed tomography, image fusion, and stereotactic targeting to map the locations of the VIM, VOP, and VOA nuclei of the thalamus. A deep brain stimulation electrode was then implanted on the border between the left VIM and VOP thalamic nuclei, and a second ipsilateral deep brain stimulation lead was placed on the VOA and VOP border, 2 mm anterior to the first. Fourteen videotaped tremor rating scales were evaluated by two blinded reviewers. CONCLUSION: The patient experienced tremor rebound with VIM-VOP monotherapy. However, when the second lead (VOA/VOP) was activated, he experienced sustained improvement in tremor and tremor disability at a 12-month follow-up examination. This case elucidates a potential new approach for the treatment of patients with posttraumatic Holmes tremor. Additional study and longer follow-up periods will be needed to further evaluate this promising therapy.

2020 ◽  
Vol 10 (9) ◽  
pp. 642
Author(s):  
Marie T. Krüger ◽  
Rebecca Kurtev-Rittstieg ◽  
Georg Kägi ◽  
Yashar Naseri ◽  
Stefan Hägele-Link ◽  
...  

Automatic anatomical segmentation of patients’ anatomical structures and modeling of the volume of tissue activated (VTA) can potentially facilitate trajectory planning and post-operative programming in deep brain stimulation (DBS). We demonstrate an approach to evaluate the accuracy of such software for the ventral intermediate nucleus (VIM) using directional leads. In an essential tremor patient with asymmetrical brain anatomy, lead placement was adjusted according to the suggested segmentation made by the software (Brainlab). Postoperatively, we used directionality to assess lead placement using side effect testing (internal capsule and sensory thalamus). Clinical effects were then compared to the patient-specific visualization and VTA simulation in the GUIDE™ XT software (Boston Scientific). The patient’s asymmetrical anatomy was correctly recognized by the software and matched the clinical results. VTA models matched best for dysarthria (6 out of 6 cases) and sensory hand side effects (5/6), but least for facial side effects (1/6). Best concordance was observed for the modeled current anterior and back spread of the VTA, worst for the current side spread. Automatic anatomical segmentation and VTA models can be valuable tools for DBS planning and programming. Directional DBS leads allow detailed postoperative assessment of the concordance of such image-based simulation and visualization with clinical effects.


2021 ◽  
Vol 12 ◽  
pp. 355
Author(s):  
João Pedro Einsfeld Britz ◽  
Paulo Roberto Franceschini ◽  
Miguel Bertelli Ramos ◽  
Pedro Henrique Pires de Aguiar ◽  
Jibril Osman Farah ◽  
...  

Background: Skin erosion is a common complication after deep brain stimulator procedures. Despite being a relatively common event, there is no standard surgical technique or a widely accepted guideline for managing this kind of complication. Methods: We describe a case of cutaneous erosion in the connector’s site of deep brain stimulation case, surgically managed with anterior displacement of the connectors and overlapping and wrapping the connections within the temporal muscle. Results: Postoperatively, the patient did well and achieved complete resolution of the skin erosion, with no signs of infection or new skin lesions. Conclusion: This technique demonstrated to be effective in this case in the long-term follow-up.


Brain ◽  
2020 ◽  
Vol 143 (11) ◽  
pp. 3242-3261 ◽  
Author(s):  
Laura Cif ◽  
Diane Demailly ◽  
Jean-Pierre Lin ◽  
Katy E Barwick ◽  
Mario Sa ◽  
...  

Abstract Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5–37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden’s Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Estefanía Hernandez-Martin ◽  
Enrique Arguelles ◽  
Yifei Zheng ◽  
Ruta Deshpande ◽  
Terence D. Sanger

AbstractHigh-frequency peripheral nerve stimulation has emerged as a noninvasive alternative to thalamic deep brain stimulation for some patients with essential tremor. It is not known whether such techniques might be effective for movement disorders in children, nor is the mechanism and transmission of the peripheral stimuli to central brain structures understood. This study was designed to investigate the fidelity of transmission from peripheral nerves to thalamic nuclei in children with dystonia undergoing deep brain stimulation surgery. The ventralis intermediate (VIM) thalamus nuclei showed a robust evoked response to peripheral high-frequency burst stimulation, with a greatest response magnitude to intra-burst frequencies between 50 and 100 Hz, and reliable but smaller responses up to 170 Hz. The earliest response occurred at 12–15 ms following stimulation onset, suggesting rapid high-fidelity transmission between peripheral nerve and thalamic nuclei. A high-bandwidth, low-latency transmission path from peripheral nerve to VIM thalamus is consistent with the importance of rapid and accurate sensory information for the control of coordination and movement via the cerebello-thalamo-cortical pathway. Our results suggest the possibility of non-invasive modulation of thalamic activity in children with dystonia, and therefore the possibility that a subset of children could have beneficial clinical response without the need for invasive deep brain stimulation.


Neurosurgery ◽  
2011 ◽  
Vol 68 (3) ◽  
pp. 738-743 ◽  
Author(s):  
Abilash Haridas ◽  
Michele Tagliati ◽  
Irene Osborn ◽  
Ioannis Isaias ◽  
Yakov Gologorsky ◽  
...  

Abstract BACKGROUND: Deep brain stimulation (DBS) at the internal globus pallidus (GPi) has replaced ablative procedures for the treatment of primary generalized dystonia (PGD) because it is adjustable, reversible, and yields robust clinical improvement that appears to be long lasting. OBJECTIVE: To describe the long-term responses to pallidal DBS of a consecutive series of 22 pediatric patients with PGD. METHODS: Retrospective chart review of 22 consecutive PGD patients, ≤21 years of age treated by one DBS team over an 8-year period. The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) was used to evaluate symptom severity and functional disability, pre- and post-operatively. Adverse events and medication changes were also noted. RESULTS: The median follow-up was 2 years (range, 1-8 years). All 22 patients reached 1-year follow-up; 14 reached 2 years, and 11 reached 3 years. The BFMDRS motor subscores were improved 84%, 93%, and 94% (median) at these time points. These motor responses were matched by equivalent improvements in function, and the response to DBS resulted in significant reductions in oral and intrathecal medication requirements after 12 and 24 months of stimulation. There were no hemorrhages or neurological complications related to surgery and no adverse effects from stimulation. Significant hardware-related complications were noted, in particular, infection (14%), which delayed clinical improvement. CONCLUSION: Pallidal DBS is a safe and effective treatment for PGD in patients <21 years of age. The improvement appears durable. Improvement in device design should reduce hardware-related complications over time.


Sign in / Sign up

Export Citation Format

Share Document