scholarly journals Magnetic Resonance Imaging Measures of Posterior Cranial Fossa Morphology and Cerebrospinal Fluid Physiology in Chiari Malformation Type I

Neurosurgery ◽  
2014 ◽  
Vol 75 (5) ◽  
pp. 515-522 ◽  
Author(s):  
Noam Alperin ◽  
James R. Loftus ◽  
Carlos J. Oliu ◽  
Ahmet M. Bagci ◽  
Sang H. Lee ◽  
...  

Abstract BACKGROUND: It has been well documented that, along with tonsillar herniation, Chiari Malformation Type I (CMI) is associated with smaller posterior cranial fossa (PCF) and altered cerebrospinal fluid (CSF) flow and tissue motion in the craniocervical junction. OBJECTIVE: This study assesses the relationship between PCF volumetry and CSF and tissue dynamics toward a combined imaging-based morphological-physiological characterization of CMI. Multivariate analysis is used to identify the subset of parameters that best discriminates CMI from a healthy cohort. METHODS: Eleven length and volumetric measures of PCF, including crowdedness and 4th ventricle volume, 4 measures of CSF and cord motion in the craniocervical junction, and 5 global intracranial measures, including intracranial compliance and pressure, were measured by magnetic resonance imaging (MRI) in 36 symptomatic CMI subjects (28 female, 37 ± 11 years) and 37 control subjects (24 female, 36 ± 12 years). The CMI group was further divided based on symptomatology into “typical” and “atypical” subgroups. RESULTS: Ten of the 20 morphologic and physiologic measures were significantly different between the CMI and the control cohorts. These parameters also had less variability and stronger significance in the typical CMI compared with the atypical. The measures with the most significance were clival and supraocciput lengths, PCF crowdedness, normalized PCF volume, 4th ventricle volume, maximal cord displacement (P < .001), and MR measure of intracranial pressure (P = .007). Multivariate testing identified cord displacement, PCF crowdedness, and normalized PCF as the strongest discriminator subset between CMI and controls. MR measure of intracranial pressure was higher in the typical CMI cohort compared with the atypical. CONCLUSION: The identified 10 complementing morphological and physiological measures provide a more complete and symptomatology-relevant characterization of CMI than tonsillar herniation alone.

OBJECTIVE Posterior vault distraction osteogenesis (PVDO) is an effective tool to increase intracranial volume and expand the posterior cranial fossa. During PVDO, the authors extended osteotomy posterior to the foramen magnum to fully expand the posterior cranial fossa. The aim of this study was to investigate the efficacy of complete PVDO in posterior fossa expansion and treatment of Chiari malformation type I (CM-I) in patients with craniosynostosis. METHODS Patients with craniosynostosis who had undergone complete PVDO between January 2012 and May 2020 were reviewed retrospectively. A coronal osteotomy extending to the foramen magnum was performed and the foramen magnum was decompressed by removing its posterior rim with a 1-mm Kerrison rongeur. Four distractor devices were placed and the vector of distraction was controlled from the posterior to the inferior-posterior direction, depending on the deformity. Changes in the intracranial volume, posterior cranial fossa area, and cerebellar tonsillar descent were measured after complete PVDO by using CT and MRI. RESULTS A total of 11 patients with craniosynostosis and concurrent CM-I were included in the study. The mean age was 34.6 ± 24.0 months (continuous variables are expressed as the mean ± SD throughout). One patient had sleep apnea, which was consistent with CM-I, and another patient had a headache, which was nonspecific. The intracranial volume increased from 1179.6 ± 180.2 cm3 to 1440.6 ± 251.5 cm3 (p = 0.003; 24.5% increase compared to the preoperative volume). The posterior skull base area increased from 44.9 ± 19.3 cm2 to 72.7 ± 18.1 cm2 (p = 0.004). Cerebellar tonsillar descent decreased in all 11 patients after complete PVDO (preoperative: 10.8 ± 3.7 mm, postoperative: 2.7 ± 3.0 mm; p = 0.003). Among the 11 patients, 5 showed complete resolution of cerebellar tonsillar herniation. CONCLUSIONS Complete PVDO can more efficiently expand the posterior cranial fossa, unlike conventional methods. Moreover, it helps to relieve cerebellar tonsillar herniation. Complete PVDO is a powerful tool to increase the intracranial and posterior fossa volumes in patients with craniosynostosis and concurrent CM-I.


Neurosurgery ◽  
2015 ◽  
Vol 77 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Noam Alperin ◽  
James R. Loftus ◽  
Carlos J. Oliu ◽  
Ahmet M. Bagci ◽  
Sang H. Lee ◽  
...  

Abstract BACKGROUND: Suboccipital cough-induced headaches are considered a hallmark symptom of Chiari malformation type I (CMI). However, non--Valsalva-related suboccipital headaches and headaches in other locations are also common in CMI. The diagnostic significance and the underlying factors associated with these different headaches types are not well understood. OBJECTIVE: To compare cranial morphology and hydrodynamics in 3 types of headaches in CMI to better understand the pathophysiological basis for the different headache characteristics. METHODS: Twenty-two cranial physiological and morphological measures were obtained with specialized magnetic resonance imaging scans from 63 symptomatic pretreated CMI patients, 40 with suboccipital headaches induced by Valsalva maneuvers (34 women; age, 36 ± 10 years), 15 with non--Valsalva-related suboccipital headaches (10 women; age, 33 ± 9 years), 8 with nonsuboccipital non--Valsalva-induced headaches (8 women; age, 39 ± 13 years), and 37 control subjects (24 women; age, 36 ± 12 years). Group differences were identified with the use of the 2-tailed Student t test. RESULTS: Posterior cranial fossa markers of CMI were similar among the 3 headache subtypes. However, the Valsalva-related suboccipital headaches cohort demonstrated a significantly lower intracranial compliance index than the non--Valsalva-related suboccipital headaches cohort (7.5 ± 3.4 vs 10.9 ± 4.9), lower intracranial volume change during the cardiac cycle (0.48 ± 0.19 vs 0.61 ± 0.16 mL), and higher magnetic resonance imaging--derived intracranial pressure (11.1 ± 4.3 vs 7.7 ± 2.8 mm Hg; P = .02). The Valsalva-related suboccipital headaches cohort had smaller intracranial and lateral ventricular volumes compared with the healthy cohort. The non--Valsalva-related suboccipital headaches cohort had reduced venous drainage through the jugular veins. CONCLUSION: Valsalva-induced worsening of occipital headaches appears to be related to a small intracranial volume rather than the smaller posterior cranial fossa. This explains the reduced intracranial compliance and corresponding higher pressure measured in CMI patients with headaches affected by Valsalva maneuvers.


2009 ◽  
Vol 111 (5) ◽  
pp. 1046-1052 ◽  
Author(s):  
Rémy Noudel ◽  
Nicolas Jovenin ◽  
Cristophe Eap ◽  
Bernard Scherpereel ◽  
Laurent Pierot ◽  
...  

Object The chronic tonsillar herniation defining Chiari malformation Type I (CMI) is thought to result from overcrowding of a normally developing hindbrain within a congenitally small posterior cranial fossa (PCF) due to occipital hypoplasia. The goals in the present study were to authenticate the cranioencephalic disproportion in a group of patients with CMI and to discuss new developmental aspects according to which part of the occipital bone was underdeveloped. Methods The authors retrospectively examined a group of 17 patients with CMI. Measurements of osteotentorial and neural structures of the PCF were made on MR images of the brain. The results were compared with findings in 30 healthy controls by using the Mann-Whitney U-test. Results Dimensions of the neural structures did not differ between the 2 groups of patients. The mean length of the basiocciput was significantly shorter in the CMI group (19.4 mm) compared with the control group (25.7 mm; p = 0.0003). The mean diameter of the foramen magnum was larger in the CMI group, but this difference was not statistically significant. The dimensions of the supraocciput and the mean angle of the cerebellar tentorium were identical in the 2 groups. Conclusions Data in this study support the idea that occipital hypoplasia is the main cause of overcrowding within the PCF. Basioccipital shortness is a cardinal feature of the resultant shallow PCF and could proceed from a congenital disorder of the cephalic mesoderm of the parachordal plate or occur later in the infancy because of premature stenosis of the sphenooccipital synchondrosis.


2013 ◽  
Vol 24 (3) ◽  
pp. 250-256 ◽  
Author(s):  
Aintzane Urbizu ◽  
Maria-Antonia Poca ◽  
Xavier Vidal ◽  
Alex Rovira ◽  
Juan Sahuquillo ◽  
...  

2008 ◽  
Vol 1 (1) ◽  
pp. 21-24 ◽  
Author(s):  
R. Shane Tubbs ◽  
Mark Hill ◽  
Marios Loukas ◽  
Mohammadali M. Shoja ◽  
W. Jerry Oakes

Object Many authors have concluded that the Chiari malformation Type I (CM-I) is due to a smaller than normal posterior cranial fossa. In order to establish this smaller geometry as the cause of hindbrain herniation in a family, the authors of this paper performed volumetric analysis in a family found to have this malformation documented in 4 generations. Methods Members from this family found to have a CM-I by imaging underwent volumetric analysis of their posterior cranial fossa using the Cavalieri method. Results No member of this family found to have CM-I on preoperative imaging had a posterior fossa that was significantly smaller than that of age-matched controls. Conclusions The results of this study demonstrate that not all patients with a CM-I will have a reduced posterior cranial fossa volume. Although the mechanism for the development of hindbrain herniation in this cohort is unknown, this manifestation can be seen in multiple generations of a familial aggregation with normal posterior fossa capacity.


2003 ◽  
Vol XXXV (1-2) ◽  
pp. 44-46
Author(s):  
A. V. Selezneva ◽  
E. G. Mendelevich ◽  
I. M. Mikhailov ◽  
L. R. Valieva ◽  
E. I. Bogdanov

It was found that syringomyelic patients and clinically healthy people out of the families with MRT-features of Chiari malformation, type I, had a confident decrease of depth and square of posterior cranial fossa. Relatives of patients, having no signs of Chiari malformation, type I, had the same changes as well. There was made a conclusion about presence of posterior cranial fossa hypoplasia in all patients with hereditary syryngomyelia and in members of their families, both having MRT-features of Chiari malformation type I, and having no malformation. It was supposed that posterior cranial fossa hypoplasia is a neurovisual reflection of its hereditary phonotype, and the latter in some cases leads to cerebellar tonsil ptosis, and if there are some endogenic and exogenic factors to development of family syringomyelia.


2017 ◽  
Vol 126 (2) ◽  
pp. 626-633 ◽  
Author(s):  
Aintzane Urbizu ◽  
Alex Ferré ◽  
Maria-Antonia Poca ◽  
Alex Rovira ◽  
Juan Sahuquillo ◽  
...  

OBJECTIVETraditionally, Chiari malformation Type I has been related to downward herniation of the cerebellar tonsils as a consequence of an underdeveloped posterior cranial fossa. Although the common symptoms of Chiari malformation Type I are occipital headaches, cervical pain, dizziness, paresthesia, and sensory loss, patients often report symptoms related to pharyngeal dysfunction such as choking, regurgitation, dysphagia, aspiration, chronic cough, and sleep disorders. In addition, tracheal intubation is often difficult in these patients. The purpose of this study was to analyze the morphological features of the oropharynx and oral cavity in patients with Chiari malformation Type I to help identify underlying anatomical anomalies leading to these debilitating symptoms.METHODSSeventy-six adult patients with symptomatic Chiari malformation Type I with cerebellar tonsillar descent greater than 5 mm below the foramen magnum and a small posterior cranial fossa and 49 sex-matched controls were selected to perform a retrospective case-control MRI-based morphometric study in a tertiary hospital. Eleven linear and areal parameters of the oropharyngeal cavity on midsagittal T1-weighted MRI were measured and the average values between patients and control cohorts were compared. Correlations between variables showing or approaching statistical significance in these structures and posterior cranial fossa measurements related with the occipital bone were sought.RESULTSSignificant differences were detected for several oropharynx and oral cavity measures in the patient cohort, primarily involving the length and thickness of the soft palate (p = 9.5E-05 and p = 3.0E-03, respectively). A statistically significant (p < 0.01) moderate correlation between some of these variables and posterior cranial fossa parameters was observed.CONCLUSIONSThe existence of structural oropharyngeal and oral cavity anomalies in patients with Chiari malformation Type I was confirmed, which may contribute to the frequent occurrence of respiratory and deglutitory complications and sleep disorders in this syndrome.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Feng Lu ◽  
Zan Chen ◽  
Hao Wu ◽  
Feng-Zeng Jian

Objective. To explore the magnetic resonance imaging (MRI) characteristics of Chiari malformation type I (CMI) in patients with dysphagia. Methods. Adult patients diagnosed with CMI were retrospectively and consecutively reviewed from January 2013 to December 2016. Symptoms and medical characteristics were recorded. According to the clinical manifestations, we divided the patients into two groups. The first group had 21 patients with symptoms of dysphagia and the second group had 71 patients with nondysphagia symptoms. Various length or angle measurements of the posterior cranial fossa (PCF), syringomyelia, and degree of cerebellar tonsillar herniation were investigated using magnetic resonance imaging (MRI). Univariate, correlation, and multivariate logistic regression analyses were used to compare and analyze the data of the two groups. Results. The mean length of the clivus, height of PCF, and slope inclination angle of clivus significantly decreased in the dysphagia group compared to the nondysphagia group. The mean cranial spinal angle (CSA) and degree of cerebellar tonsillar herniation were significantly larger in the dysphagia group. There were no correlations between the age, sex, disease duration, and the length of cerebellar tonsillar herniation or CSA. There was a positive correlation between dysphagia level and CSA (r=-0.50; p=0.021). Among CSA, age, sex, the degree of tonsillar herniation, syringomyelia, and disease duration, CSA was the individual sign that correlated significantly with dysphagia (OR: 1.447; 95% CI: 1.182-1.698; P<0.001). Interactions between CSA and the degree of cerebellar tonsillar herniation, syringomyelia, and dysphagia existed (OR: 1.104; 95% CI: 1.042-1.170; P=0.001 and OR: 1.081; 95% CI: 1.023-1.142; P=0.006, respectively). Conclusions. The CMI patients with dysphagia were more likely to have a large CSA on MRI compared with CMI patients without dysphagia. An increased probability with syringomyelia or length of cerebellar tonsillar herniation can enhance the contribution of CSA to dysphagia in patients with CMI.


Medicine ◽  
2019 ◽  
Vol 98 (19) ◽  
pp. e15533 ◽  
Author(s):  
Zheng Liu ◽  
Zheng Hao ◽  
Si Hu ◽  
Yeyu Zhao ◽  
Meihua Li

Author(s):  
Misao Nishikawa ◽  
Paolo A. Bolognese ◽  
Roger W. Kula ◽  
Hiromichi Ikuno ◽  
Kenji Ohata

Introduction We investigated the mechanism of ptosis of the brain stem and cerebellum (hindbrain) in Chiari malformation type I (CM-I) and classified CM-I according to pathogenesis, based on a morphometric study of the posterior cranial fossa (PCF) and craniovertebral junction (CVJ). We discuss the appropriate surgical treatment for hindbrain ptosis. Materials and Methods We examined 500 patients with CM-I and 100 healthy control individuals. We calculated the volume of the PCF (VPCF) and measured the axial length of the enchondral parts of the occipital bone and hindbrain. As statistical analyses, for the multiple analyses, heavy palindromic tests were used. Using three independent objective parameters, we tried to classify CM-I. Results Three independent subtypes were confirmed (CM-I types A, B, and C). CM-I type A (167 cases): normal VPCF, normal volume of the area surrounding the foramen magnum (VSFM), and normal occipital bone size; CM-I type B (178 cases): normal VPCF, small VSFM, and small occipital bone size; and CM-I type C (155 cases): small VPCF, small VSFM, and small occipital bone size. Conclusions Morphometric analyses of PCF and CVJ were very useful for the investigation of the mechanism of hindbrain ptosis and classifying CM-I according to pathogenesis. CM-I type A included mechanisms other than hindbrain ptosis, for example, CVJ instability, tethered cord, and increased intracranial pressure. CM-I types B and C demonstrated underdevelopment of the occipital bone. For CM-I types B and C, posterior decompression should be performed. For CM-I type A, appropriate surgical management should be selected.


Sign in / Sign up

Export Citation Format

Share Document