Role of Central Plasticity in the Outcome of Peripheral Nerve Regeneration

Neurosurgery ◽  
2015 ◽  
Vol 77 (3) ◽  
pp. 418-423 ◽  
Author(s):  
Chandan B. Mohanty ◽  
Dhananjaya Bhat ◽  
Bhagavatula Indira Devi

Abstract The optimal refinement in nerve repair techniques has reached a plateau, making it imperative to continually explore newer avenues for improving the clinical outcome of peripheral nerve regeneration. The aim of this short review is to discuss the role and mechanism of brain plasticity in nerve regeneration, as well as to explore the possible application of this knowledge for improving the clinical outcome following nerve repair.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Feixiang Chen ◽  
Weihuang Liu ◽  
Qiang Zhang ◽  
Ping Wu ◽  
Ao Xiao ◽  
...  

AbstractPeripheral nerve injury is a serious health problem and repairing long nerve deficits remains a clinical challenge nowadays. Nerve guidance conduit (NGC) serves as the most promising alternative therapy strategy to autografts but its repairing efficiency needs improvement. In this study, we investigated whether modulating the immune microenvironment by Interleukin-17F (IL-17F) could promote NGC mediated peripheral nerve repair. Chitosan conduits were used to bridge sciatic nerve defect in IL-17F knockout mice and wild-type mice with autografts as controls. Our data revealed that IL-17F knockout mice had improved functional recovery and axonal regeneration of sciatic nerve bridged by chitosan conduits comparing to the wild-type mice. Notably, IL-17F knockout mice had enhanced anti-inflammatory macrophages in the NGC repairing microenvironment. In vitro data revealed that IL-17F knockout peritoneal and bone marrow derived macrophages had increased anti-inflammatory markers after treatment with the extracts from chitosan conduits, while higher pro-inflammatory markers were detected in the Raw264.7 macrophage cell line, wild-type peritoneal and bone marrow derived macrophages after the same treatment. The biased anti-inflammatory phenotype of macrophages by IL-17F knockout probably contributed to the improved chitosan conduit guided sciatic nerve regeneration. Additionally, IL-17F could enhance pro-inflammatory factors production in Raw264.7 cells and wild-type peritoneal macrophages. Altogether, IL-17F may partially mediate chitosan conduit induced pro-inflammatory polarization of macrophages during nerve repair. These results not only revealed a role of IL-17F in macrophage function, but also provided a unique and promising target, IL-17F, to modulate the microenvironment and enhance the peripheral nerve regeneration.


2021 ◽  
pp. 102482
Author(s):  
Tito Sumarwoto ◽  
Heri Suroto ◽  
Ferdiansyah Mahyudin ◽  
Dwikora Novembri Utomo ◽  
Romaniyanto ◽  
...  

2020 ◽  
Vol 18 (11) ◽  
pp. 1154-1163
Author(s):  
Samira Bolandghamat ◽  
Morteza Behnam-Rassouli

: Peripheral nerve injuries (PNIs) are accompanied with neuropathic pain and functional disability. Despite improvements in surgical repair techniques in recent years, the functional recovery is yet unsatisfied. Indeed a successful nerve repair depends not only on the surgical strategy but also on the cellular and molecular mechanisms involved in traumatic nerve injury. In contrast to all strategies suggested for nerve repair, pharmacotherapy is a cheap, accessible and non-invasive treatment that can be used immediately after nerve injury. This study aimed to review the effects of some pharmacological agents on the nerve regeneration after traumatic PNI evaluated by functional, histological and electrophysiological assessments. In addition, some cellular and molecular mechanisms responsible for their therapeutic actions, restricted to neural tissue, are suggested. These findings can not only help to find better strategies for peripheral nerve repair, but also to identify the neuropathic effects of various medications and their mechanisms of action.


2018 ◽  
Vol 6 (5) ◽  
pp. 1059-1075 ◽  
Author(s):  
C. R. Carvalho ◽  
S. Wrobel ◽  
C. Meyer ◽  
C. Brandenberger ◽  
I. F. Cengiz ◽  
...  

This experimental work considers the innovative use of the biomaterial Gellan Gum (GG) as a luminal filler for nerve guidance channels.


2020 ◽  
Vol 1 (2) ◽  
pp. 49-59 ◽  
Author(s):  
Matthew Wilcox ◽  
Holly Gregory ◽  
Rebecca Powell ◽  
Tom J. Quick ◽  
James B. Phillips

Abstract Purpose of Review This review focuses on biomechanical and cellular considerations required for development of biomaterials and engineered tissues suitable for implantation following PNI, as well as translational requirements relating to outcome measurements for testing success in patients. Recent Findings Therapies that incorporate multiple aspects of the regenerative environment are likely to be key to improving therapies for nerve regeneration. This represents a complex challenge when considering the diversity of biological, chemical and mechanical factors involved. In addition, clinical outcome measures following peripheral nerve repair which are sensitive and responsive to changes in the tissue microenvironment following neural injury and regeneration are required. Summary Effective new therapies for the treatment of PNI are likely to include engineered tissues and biomaterials able to evoke a tissue microenvironment that incorporates both biochemical and mechanical features supportive to regeneration. Translational development of these technologies towards clinical use in humans drives a concomitant need for improved clinical measures to quantify nerve regeneration.


Sign in / Sign up

Export Citation Format

Share Document