scholarly journals A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros

Development ◽  
2009 ◽  
Vol 136 (17) ◽  
pp. 2883-2892 ◽  
Author(s):  
F. Bollig ◽  
B. Perner ◽  
B. Besenbeck ◽  
S. Kothe ◽  
C. Ebert ◽  
...  
1994 ◽  
Vol 14 (12) ◽  
pp. 8191-8201
Author(s):  
A Dey ◽  
S Minucci ◽  
K Ozato

Retinoic acid (RA) activates transcription of the RA receptor beta 2 (RAR beta 2) gene in embryonal carcinoma (EC) cells. This activation involves binding of the RAR/retinoid X receptor (RAR/RXR) heterodimer to the RA-responsive element (beta RARE). Dimethyl sulfate-based genomic footprinting was performed to examine occupancy of this promoter in P19 EC cells. No footprint was detected at the beta RARE prior to RA treatment, but a footprint was detected within the first hour of RA treatment. Concomitantly, other elements in the promoter, the cyclic AMP-responsive element and tetradecanoyl phorbol acetate-like-responsive element became footprinted. Footprints at these elements were induced by RA without requiring new protein synthesis and remained for the entire duration of RA treatment but rapidly reversed upon withdrawal of RA. A delayed protection observed at the initiator site was also reversed upon RA withdrawal. The RA-inducible footprint was not due to induction of factors that bind to these element, since in vitro assays showed that these factors are present in P19 cell extracts before RA treatment. Significantly, no RA-induced footprint was observed at any of these elements in P19 cells expressing a dominant negative RXR beta, in which RXR heterodimers are unable to bind to the beta RARE. Results indicate that binding of a liganded heterodimer receptor to the beta RARE is the initial event that allows other elements to gain access to the factors. In accordance, reporter analyses showed that a mutation in the beta RARE, but not those in other elements, abrogates RA activation of the promoter. It is likely that the RAR beta 2 promoter opens in a hierarchically ordered manner, signalled by the occupancy of liganded heterodimers.


1995 ◽  
Vol 117 (4) ◽  
pp. 845-849 ◽  
Author(s):  
R. Claudio Pedraza ◽  
Shyuichiro Matsubara ◽  
Takashi Muramatsu

1991 ◽  
Vol 11 (7) ◽  
pp. 3814-3820 ◽  
Author(s):  
J N Rottman ◽  
R L Widom ◽  
B Nadal-Ginard ◽  
V Mahdavi ◽  
S K Karathanasis

The gene coding for apolipoprotein AI, a plasma protein involved in the transport of cholesterol and other lipids in the plasma, is expressed predominantly in liver and intestine. Previous work in our laboratory has shown that hepatocyte-specific expression is determined by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located in the region -222 to -110 nucleotides upstream of the apolipoprotein AI gene transcription start site (+1). In this study, it was found that site A is a highly selective retinoic acid-responsive element (RARE) that responds preferentially to the recently identified retinoic acid receptor RXR alpha over the previously characterized retinoic acid receptors RAR alpha and RAR beta. Control experiments indicated that a RARE in the regulatory region of the laminin B1 gene responds preferentially to RAR alpha and RAR beta over RXR alpha, while a previously described palindromic thyroid hormone-responsive element responds similarly to all three of these receptors. Gel retardation experiments showed that the activity of these RAREs is concordant with receptor binding. These results indicate that different RAREs may play a fundamental role in defining distinctive retinoic acid cellular response pathways and suggest that retinoic acid response pathways mediated by RXR alpha play an important role in cholesterol and retinoid transport and metabolism.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2377-2377
Author(s):  
Pengxu Qian ◽  
Youngwook Ahn ◽  
Bony De Kumar ◽  
Christof Nolte ◽  
Xi C. He ◽  
...  

Abstract Hematopoietic stem cells (HSCs) sustain lifelong production of multiple blood cell types through a finely-tuned balance between stem cell maintenance and activation to prevent bone marrow exhaustion or overgrowth. The highly conserved Hox family of homeodomain containing transcription factors have been identified as key regulators and contributors in both normal hematopoiesis and leukemogenesis. Most previous work has focused on individual Hox genes; however, it remains largely unknown whether and how multiple Hox genes in a cluster are regulated and function in hematopoiesis. We initiated a study to perform systematic, high-throughput transcriptome analysis in the following 17 cell types from the bone marrow (BM) of C57BL/6J mice: 4 hematopoietic stem and progenitor cells (CD49blo long-term (LT)-HSC, CD49bhi intermediate-term (IT)-HSC, short-term (ST)-HSC, and MPP); and 4 committed progenitors (CLP, CMP, GMP and MEP); and 9 mature lineage cells (B cell, T cell, NK cell, dendritic cell, monocyte, macrophage, granulocyte, megakaryocyte and nucleated erythrocyte). Intriguingly, as part of a unique fingerprint observed in the most primitive CD49blo LT-HSCs, we detected expression from the Hoxb cluster. Further analysis on all the four Hox clusters revealed that most of the genes from the Hoxb cluster, and not from the other Hox clusters, were predominantly expressed in the CD49blo LT-HSCs. This suggests that they might function as a cluster to maintain CD49blo LT-HSCs. A previous study has shown that one cis -regulatory retinoic acid responsive element (RARE), is conserved among vertebrate species and regulates multiple Hoxb gene expression in central nervous system development. Thus, we asked whether RARE is essential for maintenance of primitive CD49blo LT-HSCs by regulation of Hoxb cluster. To test this hypothesis, we utilized a RAREΔ knockout mouse model and assayed for HSC numbers in BM. We observed that homozygous deletion of RARE led to 2-fold reduction in both the frequency and absolute number of CD49blo LT-HSCs. Functionally, we first conducted limiting dilution, competitive repopulating unit (CRU) assays by transplanting 2.5×104, 7.5×104 or 2×105 of BM cells from RAREΔ mutants and their control littermates, together with 2×105 recipient BM cells derived from the Ptprc mutant strain, into lethally irradiated recipient mice. Our data showed a 2.5-fold decrease in functional HSCs in RAREΔ HSCs (1/20,326) compared to control (1/50,839). To further evaluate the long-term effect of RARE on HSCs, we performed serial BM transplantation and observed a 12.9-fold reduction of reconstitution ability after secondary transplantation. These data indicate that deletion of RARE compromised HSC long-term reconstitution capacity. Collectively, our work provides evidence showing that RARE is essential for maintenance of the primitive HSCs by regulation of Hoxb cluster genes. Disclosures No relevant conflicts of interest to declare.


Placenta ◽  
2007 ◽  
Vol 28 (8-9) ◽  
pp. 898-906 ◽  
Author(s):  
F. López-Díaz ◽  
R. Nores ◽  
G. Panzetta-Dutari ◽  
D. Slavin ◽  
C. Prieto ◽  
...  

IUBMB Life ◽  
2000 ◽  
Vol 50 (6) ◽  
pp. 365-370 ◽  
Author(s):  
Eddie So ◽  
David Crowe

2005 ◽  
Vol 69 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Mami MATSUDA ◽  
Tomomasa HYOUDOU ◽  
Masanori KADOWAKI ◽  
Kaori ONUKI ◽  
Shoichi MASUSHIGE ◽  
...  

Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1975-1984 ◽  
Author(s):  
H. Weber ◽  
B. Holewa ◽  
E.A. Jones ◽  
G.U. Ryffel

The gene encoding the tissue-specific transcription factor HNF1alpha (LFB1) is transcriptionally activated shortly after mid-blastula transition in Xenopus embryos. We have now shown that the HNF1alpha protein is localized in the nuclei of the liver, gall bladder, gut and pronephros of the developing larvae. In animal cap explants treated with activin A together with retinoic acid, we induced HNF1alpha in pronephric tubules and epithelial gut cells, i.e. in mesodermal as well as in endodermal tissues. HNF1alpha can also be induced by activin A, but not by retinoic acid alone. To define the promoter element responding to the activin A signal, we injected various HNF1alpha promoter luciferase constructs into fertilized eggs and cultured the isolated animal caps in the presence of activin A. From the activity profiles of the promoter mutants used, we identified the HNF4-binding site as an activin-A-responsive element. As HNF4 is a maternal protein in Xenopus and localized in an animal-to-vegetal gradient in the cleaving embryo, we speculate that the activin A signal emanating from the vegetal pole cooperates with the maternal transcription factor HNF4 to define the embryonic regions expressing HNF1alpha.


1991 ◽  
Vol 11 (7) ◽  
pp. 3814-3820
Author(s):  
J N Rottman ◽  
R L Widom ◽  
B Nadal-Ginard ◽  
V Mahdavi ◽  
S K Karathanasis

The gene coding for apolipoprotein AI, a plasma protein involved in the transport of cholesterol and other lipids in the plasma, is expressed predominantly in liver and intestine. Previous work in our laboratory has shown that hepatocyte-specific expression is determined by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located in the region -222 to -110 nucleotides upstream of the apolipoprotein AI gene transcription start site (+1). In this study, it was found that site A is a highly selective retinoic acid-responsive element (RARE) that responds preferentially to the recently identified retinoic acid receptor RXR alpha over the previously characterized retinoic acid receptors RAR alpha and RAR beta. Control experiments indicated that a RARE in the regulatory region of the laminin B1 gene responds preferentially to RAR alpha and RAR beta over RXR alpha, while a previously described palindromic thyroid hormone-responsive element responds similarly to all three of these receptors. Gel retardation experiments showed that the activity of these RAREs is concordant with receptor binding. These results indicate that different RAREs may play a fundamental role in defining distinctive retinoic acid cellular response pathways and suggest that retinoic acid response pathways mediated by RXR alpha play an important role in cholesterol and retinoid transport and metabolism.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4264-4276 ◽  
Author(s):  
Yasuhiro Suzuki ◽  
Jun Shimada ◽  
Koichi Shudo ◽  
Masatoshi Matsumura ◽  
Massimo P. Crippa ◽  
...  

Induction of urokinase plasminogen activator (uPA) by retinoic acid (RA) is the initial event preceding certain subsequent biological changes in vascular endothelial cells. We investigated the molecular mechanism by which RA stimulates the expression of uPA, which lacks a canonical RA receptor (RAR)-responsive element, in bovine and human aortic endothelial cells. Upon stimulation with RA, mRNA levels of RAR and β transiently increased in parallel with the induction of uPA, and this increase was inhibited by cycloheximide. Results of transient transfection of RAR/RXR cDNAs and experiments using specific agonists and antagonists suggested that uPA induction is dependent upon RAR (initially, RAR) with the help of RXR. Deletion analysis of the uPA promoter suggested that RAR/RXR acts on GC box region within the uPA promoter. This was further supported by inhibition of Sp1 binding to this region. Coimmunoprecipitation studies, glutathioneS-transferase pull-down experiment, and mammalian two-hybrid assays suggested a physical interaction between RAR/RXR and Sp1. Furthermore, gel shift studies showed that the binding of Sp1 to the uPA GC box is significantly potentiated in the presence of RARs/RXRs. Finally, Sp1 and RAR/RXR synergistically enhanced the transactivation activity of the uPA promoter. These results suggest that (1) RA induces RARs mainly via RAR and that (2) RAR/RXR physically and functionally interact with Sp1, resulting in a potentiation of uPA transcription.


Sign in / Sign up

Export Citation Format

Share Document